Câu hỏi:

30/06/2022 252

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 9\;\]và mặt phẳng  \[(P):2x - 2y + z + 3 = 0\]. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử M(a;b;c) là điểm cần tìm.

Mặt cầu (S) có tâm I(1;2;3) bán kính R=3.Gọi \[\Delta \] là đường thẳng qua I và vuông góc với mp(P).

\( \Rightarrow \Delta :\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = 2 - 2t}\\{z = 3 + t}\end{array}} \right.\)

Đường thẳng \[\Delta \] cắt mặt cầu tại 2 điểm A,B. Toạ độ A,B là nghiệm của hệ:

\(\left\{ {\begin{array}{*{20}{c}}{x = 1 + 2t}\\{y = 2 - 2t}\\\begin{array}{l}z = 3 + t\\{(x - 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 9\end{array}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{t = 1}\\{t = - 1}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{A(3;0;4)}\\{B( - 1;4;2)}\end{array}} \right.\)

Ta có:\[d\left( {A;\left( P \right)} \right) = \frac{{\left| {2.3 - 2.0 + 4 + 3} \right|}}{{\sqrt {{2^2} + {2^2} + 1} }} = \frac{{13}}{3}\]

và\[d\left( {B;\left( P \right)} \right) = \frac{{\left| {2.( - 1) - 2.4 + 2 + 3} \right|}}{{\sqrt {{2^2} + {2^2} + 1} }} = \frac{5}{3}\]

Do đó điểm cần tìm là điểm\[A \equiv M \Rightarrow a + b + c = 3 + 0 + 4 = 7\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Khoảng cách từ I đến (P)  được tính theo công thức

\[d\left( {I;\left( P \right)} \right) = \frac{{\left| {2.\left( { - 1} \right) - 2 - 2.3 + 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 3\]

Phương trình mặt cầu cần tìm là \[{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\]

Đáp án cần chọn là: D

Câu 2

Lời giải

Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu (ảnh 1)

(S) có tâm I(1;1;1) và bán kính R=8.

Tâm đường tròn giao tuyến (C) là hình chiếu vuông góc H của I trên (P).

Đường thẳng \[\Delta \] qua I và vuông góc với  (P) có phương trình là

\[\frac{{x - 1}}{2} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}\]

Do\[H \in \Delta \] nên\[H(2t + 1;2t + 1;t + 1)\]

Ta có\[H \in (P)\] nên:

\[2(2t + 1) + 2(2t + 1) + t + 1 + 10 = 0 \Leftrightarrow 9t + 15 = 0 \Leftrightarrow t = - \frac{5}{3}\]

\( \Rightarrow H(\frac{{ - 7}}{3};\frac{{ - 7}}{3};\frac{{ - 2}}{3})\)

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP