Câu hỏi:

30/06/2022 377

Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm A(1;2;1);B(3;2;3), có tâm thuộc mặt phẳng (P):x−y−3=0 , đồng thời có bán kính nhỏ nhất, hãy tính bán kính R của mặt cầu (S)?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi I là tâm mặt cầu\[\left( S \right),I\left( {a,b,c} \right)\]

Suy ra\[a - b - 3 = 0 \Rightarrow a = b + 3 \Rightarrow I(b + 3;b;c)\]

\[I{A^2} = I{B^2} = {R^2} \Leftrightarrow {(b + 2)^2} + {(b - 2)^2} + {(c - 1)^2} = {b^2} + {(b - 2)^2} + {(c - 3)^2}\]

\[\begin{array}{*{20}{l}}{ \Leftrightarrow {{\left( {b + 2} \right)}^2} + {{\left( {c - 1} \right)}^2} = {b^2} + {{\left( {c - 3} \right)}^2}}\\{ \Leftrightarrow {b^2} + 4b + 4 + {c^2} - 2c + 1 = {b^2} + {c^2} - 6c + 9}\\{ \Leftrightarrow 4b + 4c - 4 = 0}\\{ \Leftrightarrow b + c - 1 = 0 \Leftrightarrow c = 1 - b}\end{array}\]

\[{R^2} = {\left( {b + 2} \right)^2} + {\left( {b - 2} \right)^2} + {\left( { - b} \right)^2} = 3{b^2} + 8 \ge 8 \Rightarrow R \ge 2\sqrt 2 \]

\[\min R = 2\sqrt 2 \]khi b=0

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Khoảng cách từ I đến (P)  được tính theo công thức

\[d\left( {I;\left( P \right)} \right) = \frac{{\left| {2.\left( { - 1} \right) - 2 - 2.3 + 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 3\]

Phương trình mặt cầu cần tìm là \[{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\]

Đáp án cần chọn là: D

Câu 2

Lời giải

Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu (ảnh 1)

(S) có tâm I(1;1;1) và bán kính R=8.

Tâm đường tròn giao tuyến (C) là hình chiếu vuông góc H của I trên (P).

Đường thẳng \[\Delta \] qua I và vuông góc với  (P) có phương trình là

\[\frac{{x - 1}}{2} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}\]

Do\[H \in \Delta \] nên\[H(2t + 1;2t + 1;t + 1)\]

Ta có\[H \in (P)\] nên:

\[2(2t + 1) + 2(2t + 1) + t + 1 + 10 = 0 \Leftrightarrow 9t + 15 = 0 \Leftrightarrow t = - \frac{5}{3}\]

\( \Rightarrow H(\frac{{ - 7}}{3};\frac{{ - 7}}{3};\frac{{ - 2}}{3})\)

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP