Câu hỏi:

30/06/2022 215

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x + 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 25\]  và mặt phẳng \[(\alpha ):2x + y - 2z + m = \;0\]. Tìm các giá trị của m để \[\left( \alpha \right)\;\]và (S) không có điểm chung.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Mặt cầu (S)  có tâm I(−1;2;3) bán kính R=5.

Để mặt cầu với mặt phẳng không có điểm chung thì khoảng cách từ tâm mặt cầu đến mặt phẳng lớn hơn bán kính mặt cầu.

Ta có

\[d(I,(\alpha )) > 5 \Leftrightarrow \frac{{|2.( - 1) + 2 - 2.3 + m|}}{{\sqrt {{2^2} + {1^2} + {{( - 2)}^2}} }} > 5\]

\[ \Leftrightarrow |m - 6| > 15 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m - 6 > 15}\\{m - 6 < - 15}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m > 21}\\{m < - 9}\end{array}} \right.\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Khoảng cách từ I đến (P)  được tính theo công thức

\[d\left( {I;\left( P \right)} \right) = \frac{{\left| {2.\left( { - 1} \right) - 2 - 2.3 + 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 3\]

Phương trình mặt cầu cần tìm là \[{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\]

Đáp án cần chọn là: D

Câu 2

Lời giải

Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu (ảnh 1)

(S) có tâm I(1;1;1) và bán kính R=8.

Tâm đường tròn giao tuyến (C) là hình chiếu vuông góc H của I trên (P).

Đường thẳng \[\Delta \] qua I và vuông góc với  (P) có phương trình là

\[\frac{{x - 1}}{2} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}\]

Do\[H \in \Delta \] nên\[H(2t + 1;2t + 1;t + 1)\]

Ta có\[H \in (P)\] nên:

\[2(2t + 1) + 2(2t + 1) + t + 1 + 10 = 0 \Leftrightarrow 9t + 15 = 0 \Leftrightarrow t = - \frac{5}{3}\]

\( \Rightarrow H(\frac{{ - 7}}{3};\frac{{ - 7}}{3};\frac{{ - 2}}{3})\)

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP