Câu hỏi:

30/06/2022 142

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x + 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 25\]  và mặt phẳng \[(\alpha ):2x + y - 2z + m = \;0\]. Tìm các giá trị của m để \[\left( \alpha \right)\;\]và (S) không có điểm chung.

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Mặt cầu (S)  có tâm I(−1;2;3) bán kính R=5.

Để mặt cầu với mặt phẳng không có điểm chung thì khoảng cách từ tâm mặt cầu đến mặt phẳng lớn hơn bán kính mặt cầu.

Ta có

\[d(I,(\alpha )) > 5 \Leftrightarrow \frac{{|2.( - 1) + 2 - 2.3 + m|}}{{\sqrt {{2^2} + {1^2} + {{( - 2)}^2}} }} > 5\]

\[ \Leftrightarrow |m - 6| > 15 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m - 6 > 15}\\{m - 6 < - 15}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m > 21}\\{m < - 9}\end{array}} \right.\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Viết  phương trình mặt cầu có tâm I(−1;2;3) và tiếp xúc với mặt phẳng (P):2x−y−2z+1=0

Xem đáp án » 30/06/2022 6,084

Câu 2:

Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu  \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 64\;\]với mặt phẳng\[\left( \alpha \right):2x + 2y + z + 10 = 0\].

Xem đáp án » 30/06/2022 5,003

Câu 3:

Trong không gian với hệ tọa độ Oxyz,(α) cắt mặt cầu (S) tâm I(1;−3;3) theo giao tuyến là đường tròn tâm H(2;0;1) , bán kính r=2 . Phương trình (S) là:

Xem đáp án » 30/06/2022 3,332

Câu 4:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;−1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?

Xem đáp án » 30/06/2022 863

Câu 5:

Trong không gian với hệ tọa độ Oxyz , phương trình nào dưới đây là phương trình mặt cầu tâm I(−3;2;−4) và tiếp xúc với mặt phẳng (Oxz)?

Xem đáp án » 30/06/2022 681

Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;−1;0),B(1;1;−1) và mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\]. Mặt phẳng (P) đi qua A,B và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:

Xem đáp án » 30/06/2022 449

Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2;1;−1) và tiếp xúc với mặt phẳng (α)  có phương trình 2x−2y−z+3=0. Bán kính của (S) là:

Xem đáp án » 30/06/2022 400

Bình luận


Bình luận