Câu hỏi:
30/06/2022 120Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x + 1)^2} + {(y - 2)^2} + {(z - 3)^2} = 25\] và mặt phẳng \[(\alpha ):2x + y - 2z + m = \;0\]. Tìm các giá trị của m để \[\left( \alpha \right)\;\]và (S) không có điểm chung.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Mặt cầu (S) có tâm I(−1;2;3) bán kính R=5.
Để mặt cầu với mặt phẳng không có điểm chung thì khoảng cách từ tâm mặt cầu đến mặt phẳng lớn hơn bán kính mặt cầu.
Ta có
\[d(I,(\alpha )) > 5 \Leftrightarrow \frac{{|2.( - 1) + 2 - 2.3 + m|}}{{\sqrt {{2^2} + {1^2} + {{( - 2)}^2}} }} > 5\]
\[ \Leftrightarrow |m - 6| > 15 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m - 6 > 15}\\{m - 6 < - 15}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m > 21}\\{m < - 9}\end{array}} \right.\]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Viết phương trình mặt cầu có tâm I(−1;2;3) và tiếp xúc với mặt phẳng (P):2x−y−2z+1=0
Câu 2:
Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 64\;\]với mặt phẳng\[\left( \alpha \right):2x + 2y + z + 10 = 0\].
Câu 3:
Trong không gian với hệ tọa độ Oxyz,(α) cắt mặt cầu (S) tâm I(1;−3;3) theo giao tuyến là đường tròn tâm H(2;0;1) , bán kính r=2 . Phương trình (S) là:
Câu 4:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;−1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?
Câu 5:
Trong không gian với hệ tọa độ Oxyz , phương trình nào dưới đây là phương trình mặt cầu tâm I(−3;2;−4) và tiếp xúc với mặt phẳng (Oxz)?
Câu 6:
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;−1;0),B(1;1;−1) và mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\]. Mặt phẳng (P) đi qua A,B và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:
Câu 7:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2;1;−1) và tiếp xúc với mặt phẳng (α) có phương trình 2x−2y−z+3=0. Bán kính của (S) là:
về câu hỏi!