Câu hỏi:

30/06/2022 217

Trong không gian với hệ tọa độ Oxyz cho mặt phẳng \[(P):x - 2y + 2z - 3 = 0\;\]và mặt cầu \[(S):{x^2} + {y^2} + {z^2} + 2x - 4y - 2z + 5 = 0\]. Giả sử \[M \in \left( P \right)\;\] và \[N \in \left( S \right)\;\] sao cho \(\overrightarrow {MN} \)cùng phương với vectơ \[\overrightarrow u = \left( {1;0;1} \right)\;\]và khoảng cách MN lớn nhất. Tính MN 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

(S) có tâm I(–1;2;1) và R=1.

Gọi \[\vec v\left( {t;0;t} \right)\] là vectơ cùng phương với vectơ\[\vec u\left( {1;0;1} \right)\] sao cho phép tịnh tiến vectơ đó biến (S) thành (S′) tiếp xúc với (P)

Phép tịnh tiến vectơ \[\vec v\left( {t;0;t} \right)\] biến I thành\[I'(--1 + t;2;1 + t)\]

Suy ra (S′) có tâm I′ và bán kính\[R' = R = 1\]

(S′) tiếp xúc (P)

\[ \Leftrightarrow d(I;(P)) = 1 \Leftrightarrow \frac{{| - 1 + t - 2.2 + 2(1 + t) - 3|}}{{\sqrt {1 + 4 + 4} }} = 1\]

\[ \Leftrightarrow |3t - 6| = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = 3}\\{t = 1}\end{array}} \right.\]

Với \[t = 3 \Rightarrow \vec v\left( {3;0;3} \right) \Rightarrow \left| {\vec v} \right| = 3\sqrt 2 \]

Với\[t = 1 \Rightarrow \vec v\left( {1;0;1} \right) \Rightarrow \left| {\vec v} \right| = \sqrt 2 \]

Vậy giá trị lớn nhất của MN là \[3\sqrt 2 \]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Khoảng cách từ I đến (P)  được tính theo công thức

\[d\left( {I;\left( P \right)} \right) = \frac{{\left| {2.\left( { - 1} \right) - 2 - 2.3 + 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 3\]

Phương trình mặt cầu cần tìm là \[{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\]

Đáp án cần chọn là: D

Câu 2

Lời giải

Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu (ảnh 1)

(S) có tâm I(1;1;1) và bán kính R=8.

Tâm đường tròn giao tuyến (C) là hình chiếu vuông góc H của I trên (P).

Đường thẳng \[\Delta \] qua I và vuông góc với  (P) có phương trình là

\[\frac{{x - 1}}{2} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}\]

Do\[H \in \Delta \] nên\[H(2t + 1;2t + 1;t + 1)\]

Ta có\[H \in (P)\] nên:

\[2(2t + 1) + 2(2t + 1) + t + 1 + 10 = 0 \Leftrightarrow 9t + 15 = 0 \Leftrightarrow t = - \frac{5}{3}\]

\( \Rightarrow H(\frac{{ - 7}}{3};\frac{{ - 7}}{3};\frac{{ - 2}}{3})\)

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP