Câu hỏi:

30/06/2022 239

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} + 6x - 4z + 9 - {m^2} = 0\]. Gọi T là tập các giá trị của m để mặt cầu (S) tiếp xúc với mặt phẳng (Oyz). Tích các giá trị của mm trong T bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Mặt cầu\[\left( S \right):{x^2} + {y^2} + {z^2} + 6x - 4z + 9 - {m^2} = 0\]có tâm\[I\left( { - 3;0;2} \right)\]và bán kính \[R = \sqrt {{m^2} + 4} \]

Mặt phẳng (Oyz) có phương trình là \[x = 0 \Rightarrow d\left( {I;\left( {Oyz} \right)} \right) = \frac{{\left| { - 3} \right|}}{1} = 3\]

\[ \Rightarrow R = \sqrt {{m^2} + 4} = 3 \Leftrightarrow m = \pm \sqrt 5 \]

Tích các giá trị của m là\[\sqrt 5 .\left( { - \sqrt 5 } \right) = - 5\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Khoảng cách từ I đến (P)  được tính theo công thức

\[d\left( {I;\left( P \right)} \right) = \frac{{\left| {2.\left( { - 1} \right) - 2 - 2.3 + 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2}} }} = 3\]

Phương trình mặt cầu cần tìm là \[{\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\]

Đáp án cần chọn là: D

Câu 2

Lời giải

Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu (ảnh 1)

(S) có tâm I(1;1;1) và bán kính R=8.

Tâm đường tròn giao tuyến (C) là hình chiếu vuông góc H của I trên (P).

Đường thẳng \[\Delta \] qua I và vuông góc với  (P) có phương trình là

\[\frac{{x - 1}}{2} = \frac{{y - 1}}{2} = \frac{{z - 1}}{1}\]

Do\[H \in \Delta \] nên\[H(2t + 1;2t + 1;t + 1)\]

Ta có\[H \in (P)\] nên:

\[2(2t + 1) + 2(2t + 1) + t + 1 + 10 = 0 \Leftrightarrow 9t + 15 = 0 \Leftrightarrow t = - \frac{5}{3}\]

\( \Rightarrow H(\frac{{ - 7}}{3};\frac{{ - 7}}{3};\frac{{ - 2}}{3})\)

Đáp án cần chọn là: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP