Câu hỏi:

30/06/2022 115

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {y^2} + {z^2} - 8x + 2y + 2z - 3 = 0\;\]và đường thẳng \[\Delta :\frac{{x - 1}}{3} = \frac{y}{{ - 2}} = \frac{{z + 2}}{{ - 1}}\]. Mặt phẳng \[\left( \alpha \right)\;\]vuông góc với \[\Delta \] và cắt (S) theo giao tuyến là đường tròn (C) có bán kính lớn nhất. Phương trình \[\left( \alpha \right)\;\]là:

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đường thẳng\[{\rm{\Delta }}:\,\,\frac{{x - 1}}{3} = \frac{y}{{ - 2}} = \frac{{z + 2}}{{ - 1}}\] có 1 VTCP là\[\vec u = \left( {3; - 2; - 1} \right)\]

Vì\[\left( \alpha \right) \bot {\rm{\Delta }}\] nên mặt phẳng\[\left( \alpha \right)\] có 1 VTPT là\[\vec n = \vec u = \left( {3; - 2; - 1} \right)\]. Khi đó phương trình mặt phẳng\[\left( \alpha \right)\] có dạng\[3x - 2y - z + d = 0\]

Mặt cầu\[\left( S \right):\,\,{x^2} + {y^2} + {z^2} - 8x + 2y + 2z - 3 = 0\] có tâm\[I\left( {4; - 1; - 1} \right)\] bán kính\[R = \sqrt {16 + 1 + 1 + 3} = \sqrt {21} \]

Gọi r là bán kính đường tròn \[\left( C \right),d = d\left( {I;\left( \alpha \right)} \right)\]

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu  (ảnh 1)

Áp dụng định lí Pytago ta có:\[{R^2} = {r^2} + {d^2}\], do đó để rr đạt GTLN thì dd phải đạt GTNN (vì\[R = \sqrt {21} \] không đổi).

Ta có:\[d = \frac{{\left| {3.4 - 2.\left( { - 1} \right) - 1.\left( { - 1} \right) + d} \right|}}{{\sqrt {{3^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{\left| {15 + d} \right|}}{{\sqrt {14} }} \ge 0\] suy ra\[{d_{\min }} = 0 \Leftrightarrow d = - 15\]

Vậy phương trình mặt phẳng \[\left( \alpha \right)\]cần tìm là:\[3x - 2y - z - 15 = 0\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Viết  phương trình mặt cầu có tâm I(−1;2;3) và tiếp xúc với mặt phẳng (P):2x−y−2z+1=0

Xem đáp án » 30/06/2022 5,424

Câu 2:

Trong không gian Oxyz, xác định tọa độ tâm I của đường tròn giao tuyến của mặt cầu  \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 64\;\]với mặt phẳng\[\left( \alpha \right):2x + 2y + z + 10 = 0\].

Xem đáp án » 30/06/2022 4,038

Câu 3:

Trong không gian với hệ tọa độ Oxyz,(α) cắt mặt cầu (S) tâm I(1;−3;3) theo giao tuyến là đường tròn tâm H(2;0;1) , bán kính r=2 . Phương trình (S) là:

Xem đáp án » 30/06/2022 3,118

Câu 4:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;−1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?

Xem đáp án » 30/06/2022 816

Câu 5:

Trong không gian với hệ tọa độ Oxyz , phương trình nào dưới đây là phương trình mặt cầu tâm I(−3;2;−4) và tiếp xúc với mặt phẳng (Oxz)?

Xem đáp án » 30/06/2022 600

Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;−1;0),B(1;1;−1) và mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} - 2x + 4y - 2z - 3 = 0\]. Mặt phẳng (P) đi qua A,B và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là:

Xem đáp án » 30/06/2022 402

Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2;1;−1) và tiếp xúc với mặt phẳng (α)  có phương trình 2x−2y−z+3=0. Bán kính của (S) là:

Xem đáp án » 30/06/2022 356

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn