Danh sách câu hỏi
Có 9,313 câu hỏi trên 187 trang
Tam giác ABC vuông tại A, đường cao AH. Dựng đường tròn tâm O, đường kính AH cắt AB tại E, cắt AC tại F. Các tiếp tuyến với đường tròn (O) tại E và F. Các tiếp tuyến với đường tròn (O) tại E và F lần lượt cắt cạnh BC tại M và Na, Chứng minh MEOH là tứ giác nội tiếpb, Chứng minh rằng: AB. HE = AH. HBc, Chứng minh 3 điểm E, O, F thẳng hàngd, AB = 210cm, AC = 215cm, Tính diện tích tam giác OMN
Cho tam giác ABC nhọn nội tiếp đường tròn (O; R). AH là đường cao của tam giác ABC, M, N theo thứ tự là hình chiếu của H trên AB, AC.a, Chứng minh AMHN là tứ giác nội tiếpb, Chứng minh (ABC) = (ANM)c, Chứng minh OA ⊥ MNd, Khi AH = R2, Chứng minh M, O, N thẳng hàng
Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại Ha, Chứng minh tứ giác AEHF nội tiếpb, Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF, Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu góc BAC = 600, AH = 4 cmc, AH giao BC tại D. Chứng minh FH là tia phân giác của góc DFEd, Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại 1 điểm
Cho tam giác ABC (AB < AC) nội tiếp trong đường tròn tâm (O), M là một điểm nằm trên cung BC không chứa điểm A. Gọi D, E, F làn lượt là hình chiếu vuông góc của M trên các đường thẳng BC, CA, AB. Chứng minh rằng:a) Bốn điểmM, D, B, F thuộc một đường tròn và bốn điểm M, D, E, C thuộc một đường tròn.b) Ba điểm D, E, F thẳng hàng.c) BCMD=CAME+ABMF