Câu hỏi:

21/05/2022 402 Lưu

Tìm các giá trị thực của tham số m để phương trình \[\left| {{x^2} - 3x + 2} \right| = m\;\] có bốn nghiệm thực phân biệt.

A.\[m \ge \frac{1}{4}\]

B. \[0 < m < \frac{1}{4}\]

C. \(m = 0\)

D. Không tồn tại

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Số nghiệm của phương trình đã cho bằng số giao điểm của đồ thị hàm số

\[y = \left| {{x^2} - 3x + 2} \right|\]với đường thẳng y = m có tính chất song song với trục hoành.

Ta có \[y = \mid {x^2} - 3x + 2\mid = \left\{ {\begin{array}{*{20}{c}}{{x^2} - 3x + 2({x^2} - 3x + 2 \ge 0)}\\{ - {x^2} + 3x - 2({x^2} - 3x + 2 < 0)}\end{array}} \right.\]

Đồ thị hàm số \[y = \left| {{x^2} - 3x + 2} \right|\]được vẽ như sau:

+ Vẽ đồ thị hàm số \[y = {x^2} - 3x + 2\]+ Lấy đối xứng phần đồ thị phía dưới trục hoành qua trục hoành và xóa phần đồ thị dưới trục hoành đi.

Tìm các giá trị thực của tham số m để phương trình có bốn nghiệm thực phân biệt. (ảnh 1)

Dựa trên đồ thị ta thấy phương trình đã cho có 4 nghiệm phân biệt khi và chỉ khi \[0 < m < \frac{1}{4}\]

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bước 1:

Gọi hai điểm chân cổng là \[A\left( {{x_A};{y_A}} \right)\] và \[B\left( {{x_B};{y_B}} \right)\] thì ta có \[{y_A} = {y_B}\] và \[\left| {{x_A}} \right| = \left| {{x_B}} \right|.\]

Vì d = 4 nên \[\left| {{x_A}} \right| = \left| {{x_B}} \right| = 2.\]

Bước 2: Tính h

Vậy \[h = \left| {{y_A}} \right| = \left| { - \frac{1}{2}x_A^2} \right| = \left| { - \frac{1}{2}{{.2}^2}} \right| = 2\,\left( m \right).\]

Câu 2

A.\(\left[ {\begin{array}{*{20}{c}}{m = 1}\\{m = 2}\end{array}} \right.\)

B. \(\left[ {\begin{array}{*{20}{c}}{m < 1}\\{m >2}\end{array}} \right.\)

C. 1 < m < 2

D. Không xác định được

Lời giải

Xét phương trình hoành độ giao điểm \[{x^2} - 2x + m - 1 = 0\,\,\left( * \right)\]

Để đồ thị hàm số \[y = {x^2} - 2x + m - 1\] cắt trục hoành tại hai điểm phân biệt có hoành độ dương thì phương trình (*) có 2 nghiệm dương phân biệt.

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta \prime >0}\\{S >0}\\{P >0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{1 - m + 1 >0}\\{2 >0}\\{m - 1 >0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m < 2}\\{m >1}\end{array}} \right. \Leftrightarrow 1 < m < 2\)

Đáp án cần chọn là: C

Câu 3

A.\[y = \frac{1}{{18}}{x^2} + \frac{1}{6}x - 5\]

B. \[y = \frac{1}{{18}}{x^2} + \frac{1}{6}x + 5\]

C. \[y = 3{x^2} + 9x - 9\]

D. \[y = - \frac{1}{{18}}{x^2} + \frac{1}{6}x - 5\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\[y = {x^2} - 6x + 3\]

B. \[y = - \frac{5}{9}{x^2} + \frac{{10}}{3}x + 3\]

C. \[y = 3{x^2} + 9x + 3\]

D. \[y = \frac{5}{9}{x^2} - \frac{{10}}{3}x + 3\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\[y = - 5{x^2} + 8x + 2\]

B. \[y = 10{x^2} + 13x + 2\]

C. \[y = - 10{x^2} - 13x + 2\]

D. \[y = 9{x^2} + 6x - 5\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.a >0, b < 0, c >0

B. a < 0, b >0,c >0

C. a < 0, b < 0, c < 0

D. a < 0, b < 0, c >0

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP