Câu hỏi:

21/05/2022 200

Cho  phương trình của (P):\[y = a{x^2} + bx + c\left( {a \ne 0} \right)\] biết rằng hàm số  có giá trị lớn nhất bằng 1 và đồ thị hàm số đi qua các điểm A(2;0), B(−2;−8) Tình tổng \[{a^2} + {b^2} + {c^2}\]

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dễ thấy rằng đồ thị của (P) có đỉnh đặt trên đường thẳng y = 1 và hệ số m < 0..

Do đó, phương trình của (P) có dạng \[y = m{\left( {x - u} \right)^2} + 1\,\,(m < 0)\](P) đi qua các điểm A(2;0), B(−2;−8) nên có hệ phương trình

\(\left\{ {\begin{array}{*{20}{c}}{m{{(2 - u)}^2} + 1 = 0}\\{m{{( - 2 - u)}^2} + 1 = - 8}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{m = - \frac{1}{{{{(2 - u)}^2}}}}\\{m = - \frac{9}{{{{( - 2 - u)}^2}}}}\end{array}} \right. \Rightarrow \Rightarrow - \frac{1}{{{{\left( {2 - u} \right)}^2}}} = - \frac{9}{{{{\left( { - 2 - u} \right)}^2}}}\)

\[ \Rightarrow {\left( {u + 2} \right)^2} = 9{\left( {2 - u} \right)^2} \Leftrightarrow 8{u^2} - 40u + 32 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{u = 1}\\{u = 4}\end{array}} \right.\]

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{u = 1}\\{m = - 1\left( {tm} \right)}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{u = 4}\\{m = - \frac{1}{4}\left( {tm} \right)}\end{array}} \right.}\end{array}} \right.\)

Từ đây có hai phương trình (P) thỏa mãn là\[y = - {x^2} + 2x,\,\,\,y = - \frac{1}{4}{x^2} + 2x - 3\]

Suy ra \[{a^2} + {b^2} + {c^2} = 5\]  hoặc \[{a^2} + {b^2} + {c^2} = \frac{{209}}{{16}}\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một cái cổng hình parabol có dạng \[y = - \frac{1}{2}{x^2}\;\] có chiều rộng d = 4m.

Tính chiều cao h của cổng (xem hình minh họa)

 Một cái cổng hình parabol có dạng  có chiều rộng d = 4m.Tính chiều cao h của cổng (xem hình minh họa) (ảnh 1)

Xem đáp án » 13/07/2024 2,734

Câu 2:

Tìm giá trị của m để đồ thị hàm số \[y = {x^2} - 2x + m - 1\] cắt trục hoành tại hai điểm phân biệt có hoành độ dương.

Xem đáp án » 21/05/2022 1,728

Câu 3:

Xác định Parabol (P):\[y = a{x^2} + bx - 5\] biết rằng Parabol đi qua điểm A(3;−4) và có trục đối xứng x = −\(\frac{3}{2}\).

Xem đáp án » 21/05/2022 1,473

Câu 4:

Biết đồ thị hàm số (P):\[y = {x^2} - ({m^2} + 1)x - 1\] cắt trục hoành tại hai điểm phân biệt có hoành độ  x1,x2. Tìm giá trị của tham số mm  để biểu thức \[T = {x_1} + {x_2}\;\] đạt giá trị nhỏ nhất.

Xem đáp án » 21/05/2022 958

Câu 5:

Xác định Parabol (P):\[y = a{x^2} + bx + 2\;\] biết rằng Parabol đi qua hai điểm M(1;5) và N(2;−2).

Xem đáp án » 21/05/2022 923

Câu 6:

Xác định Parabol (P):\[y = a{x^2} + bx + 3\;\] biết rằng Parabol có đỉnh I(3;−2).

Xem đáp án » 21/05/2022 789

Câu 7:

Tìm các giá trị của tham số m để phương trình \[\frac{1}{2}{x^2} - 4\left| x \right| + 3 = {m^2}\] có 3 nghiệm thực phân biệt.

Xem đáp án » 21/05/2022 789

Bình luận


Bình luận