Câu hỏi:
21/05/2022 167Cho hàm số \[f(x) = {x^2} + 2x - 3\].
Xét các mệnh đề sau:
i) \[f(x - 1) = {x^2} - 4\]
ii) Hàm số đã cho đồng biến trên \[\left( { - 1; + \infty } \right)\]
iii) Giá trị nhỏ nhất của hàm số là một số âm.
iv) Phương trình \[f(x) = m\;\] có nghiệm khi \[m \ge - 4\]
Số mệnh đề đúng là:
Quảng cáo
Trả lời:
Ta có \[f\left( {x - 1} \right) = {\left( {x - 1} \right)^2} + 2\left( {x - 1} \right) - 3 = {x^2} - 4\]
Với trục đối xứng \[x = - \frac{b}{{2a}} = - 1\] và hệ số \[a = 1 >0\] thì hàm số đồng biến trên \[\left( { - 1;\,\, + \infty } \right)\]
Biến đối \[f\left( x \right) = {x^2} + 2x - 3 = {\left( {x + 1} \right)^2} - 4 \ge - 4\] ⇒ GTNN của hàm số là −4 < 0
Dễ thấy \[f\left( x \right) = m \Leftrightarrow {\left( {x + 1} \right)^2} = m + 4\] nên để phương trình có nghiệm thì \[m + 4 \ge 0 \Leftrightarrow m \ge - 4\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một cái cổng hình parabol có dạng \[y = - \frac{1}{2}{x^2}\;\] có chiều rộng d = 4m.
Tính chiều cao h của cổng (xem hình minh họa)
Câu 2:
Tìm giá trị của m để đồ thị hàm số \[y = {x^2} - 2x + m - 1\] cắt trục hoành tại hai điểm phân biệt có hoành độ dương.
Câu 3:
Xác định Parabol (P):\[y = a{x^2} + bx - 5\] biết rằng Parabol đi qua điểm A(3;−4) và có trục đối xứng x = −\(\frac{3}{2}\).
Câu 4:
Xác định Parabol (P):\[y = a{x^2} + bx + 3\;\] biết rằng Parabol có đỉnh I(3;−2).
Câu 5:
Xác định Parabol (P):\[y = a{x^2} + bx + 2\;\] biết rằng Parabol đi qua hai điểm M(1;5) và N(2;−2).
Câu 6:
Biết đồ thị hàm số (P):\[y = {x^2} - ({m^2} + 1)x - 1\] cắt trục hoành tại hai điểm phân biệt có hoành độ x1,x2. Tìm giá trị của tham số mm để biểu thức \[T = {x_1} + {x_2}\;\] đạt giá trị nhỏ nhất.
Câu 7:
Cho đồ thị hàm số \[y = a{x^2} + bx + c\] như hình vẽ.
Khẳng định nào sau đây là đúng:
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 13)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận