Câu hỏi:
23/05/2022 159Cho dãy số \[({u_n})\]với \[{u_n} = \frac{{\left( {2n + 1} \right)\left( {1 - 3n} \right)}}{{\sqrt[3]{{{n^3} + 5n - 1}}}}\] Khi đó \[lim\,{u_n}\] bằng?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
\[\lim {u_n} = \lim \frac{{\left( {2n + 1} \right)\left( {1 - 3n} \right)}}{{\sqrt[3]{{{n^3} + 5n - 1}}}} = \lim \frac{{ - 6{n^2} - n + 1}}{{\sqrt[3]{{{n^3} + 5n - 1}}}}\]
\[ = \lim \frac{{\frac{{ - 6{n^2} - n + 1}}{{{n^2}}}}}{{\sqrt[3]{{\frac{{{n^3} + 5n - 1}}{{{n^6}}}}}}} = \lim \frac{{ - 6 - \frac{1}{n} + \frac{1}{{{n^2}}}}}{{\sqrt[3]{{\frac{1}{{{n^3}}} + \frac{5}{{{n^5}}} - \frac{1}{{{n^6}}}}}}} = - \infty .\]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính giới hạn \[\lim \frac{{{n^2} - 3{n^3}}}{{2{n^3} + 5n - 2}}\].
Câu 2:
Cho hình vuông \[{A_1}{B_1}{C_1}{D_1}\] có cạnh bằng a và có diện tích \[{S_1}\]. Nối bốn trung điểm \[{A_2},{B_2},{C_2},{D_2}\;\] ta được hình vuông thứ hai có diện tích \[{S_2}\]. Tiếp tục như thế, ta được hình vuông \[{A_3}{B_3}{C_3}{D_3}\] có diện tích \[{S_3}, \ldots \;\] Tính tổng \[{S_1} + {S_2} + \ldots \;\] bằng
Câu 6:
Cho \[{u_n} = \frac{{1 - 4n}}{{5n}}\]. Khi đó \[lim\,{u_n}\]bằng?
Câu 7:
Giới hạn \[\lim \frac{{{{\left( {2 - 5n} \right)}^3}{{\left( {n + 1} \right)}^2}}}{{2 - 25{n^5}}}\] bằng?
về câu hỏi!