Câu hỏi:

23/05/2022 132

Cho dãy số \[({u_n})\]xác định bởi  \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 2}\\{{u_{n + 1}} = \frac{{{u_n} + 1}}{2},\left( {n \ge 1} \right)}\end{array}} \right.\) Khi đó mệnh đề nào sau đây là đúng?

Đáp án chính xác
Câu hỏi trong đề:   Giới hạn của dãy số !!

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[{u_2} = \frac{{2 + 1}}{2} = \frac{3}{2} = \frac{{{2^1} + 1}}{{{2^1}}}\]

\[{u_3} = \frac{{\frac{3}{2} + 1}}{2} = \frac{5}{4} = \frac{{{2^2} + 1}}{{{2^2}}}\]

\[{u_4} = \frac{{\frac{5}{4} + 1}}{2} = \frac{9}{8} = \frac{{{2^3} + 1}}{{{2^3}}}\]

Chứng minh bằng quy nạp:\[{u_{n + 1}} = \frac{{{2^n} + 1}}{{{2^n}}},\,\,\forall n = 1;2;...\,\,\,\,( * )\]

* Với\[n = 1:{u_2} = \frac{{{u_1} + 1}}{2} = \frac{{2 + 1}}{2} = \frac{{{2^1} + 1}}{{{2^1}}}\]: (*) đúng

* Giả sử (*) đúng với\[n = k \ge 1\] tức là\[{u_k} = \frac{{{2^k} + 1}}{{{2^k}}}\] ta chứng minh (*) đúng với\[n = k + 1\]tức là cần chứng minh\[{u_{k + 1}} = \frac{{{2^{k + 1}} + 1}}{{{2^{k + 1}}}}\]

Ta có :

\[{u_{k + 1}} = \frac{{{u_k} + 1}}{2} = \frac{{\frac{{{2^k} + 1}}{{{2^k}}} + 1}}{2} = \frac{{\frac{{{2^k} + 1 + {2^k}}}{{{2^k}}}}}{2} = \frac{{{{2.2}^k} + 1}}{{{2^{k + 1}}}} = \frac{{{2^{k + 1}} + 1}}{{{2^{k + 1}}}}\]

Theo nguyên lý quy nạp, ta chứng minh được (*).

Như vậy, công thức tổng quát của dãy \[({u_n})\]là:

\[{u_n} = \frac{{{2^{n - 1}} + 1}}{{{2^{n - 1}}}} = 1 + \frac{1}{{{2^{n - 1}}}},\,\,\forall n = 1;2;...\,\,\,\,( * )\]

Từ (*) ta có\[{u_{n + 1}} - {u_n} = 1 + \frac{1}{{{2^n}}} - \left( {1 + \frac{1}{{{2^{n - 1}}}}} \right)\]

\[ = \frac{1}{{{2^n}}} - \frac{1}{{{2^{n + 1}}}} < 0\,\,\forall n = 1,2,... \Rightarrow \left( {{u_n}} \right)\]là dãy giảm và  

\[\lim {u_n} = \lim \left( {1 + \frac{1}{{{2^{n - 1}}}}} \right) = 1 \Rightarrow \]là dãy giảm tới 1 khi\[n \to + \infty \]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính giới hạn \[\lim \frac{{{n^2} - 3{n^3}}}{{2{n^3} + 5n - 2}}\].

Xem đáp án » 23/05/2022 1,908

Câu 2:

 

 Cho hình vuông \[{A_1}{B_1}{C_1}{D_1}\] có cạnh bằng a và có diện tích \[{S_1}\]. Nối bốn trung điểm \[{A_2},{B_2},{C_2},{D_2}\;\] ta được hình vuông thứ hai có diện tích \[{S_2}\]. Tiếp tục (ảnh 1)

Cho hình vuông \[{A_1}{B_1}{C_1}{D_1}\] có cạnh bằng a và có diện tích \[{S_1}\]. Nối bốn trung điểm \[{A_2},{B_2},{C_2},{D_2}\;\] ta được hình vuông thứ hai có diện tích \[{S_2}\]. Tiếp tục như thế, ta được hình vuông \[{A_3}{B_3}{C_3}{D_3}\] có diện tích \[{S_3}, \ldots \;\] Tính tổng \[{S_1} + {S_2} + \ldots \;\] bằng

Xem đáp án » 23/05/2022 1,104

Câu 3:

Cho \[n \in {N^ * }\] nếu \[|q| < 1\;\]thì:

Xem đáp án » 23/05/2022 911

Câu 4:

Giả sử \[\lim {u_n} = L,\lim {v_n} = M\]. Chọn mệnh đề đúng:

Xem đáp án » 23/05/2022 633

Câu 5:

Cho \[\lim {u_n} = L\]. Chọn mệnh đề đúng:

Xem đáp án » 23/05/2022 608

Câu 6:

Cho \[{u_n} = \frac{{1 - 4n}}{{5n}}\]. Khi đó \[lim\,{u_n}\]bằng?

Xem đáp án » 23/05/2022 583

Câu 7:

Giới hạn \[\lim \frac{{{{\left( {2 - 5n} \right)}^3}{{\left( {n + 1} \right)}^2}}}{{2 - 25{n^5}}}\] bằng?

Xem đáp án » 23/05/2022 459

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL