Câu hỏi:

23/05/2022 140

Cho tam giác đều ABC cạnh a. Tam giác \[{A_1}{B_1}{C_1}\] có đỉnh là trung điểm các cạnh của tam giác ABC, tam giác \[{A_2}{B_2}{C_2}\] có các đỉnh là trung điểm các cạnh của tam giác \[{A_1}{B_1}{C_1}\],…, tam giác AnBnCnAnBnCn có các đỉnh là trung điểm các cạnh của tam giác \[{A_{n - 1}}{B_{n - 1}}{C_{n - 1}} \ldots .{\rm{ }}Goi\;P,{P_1},{P_2},...,{P_n},...\] là chu vi của các tam giác \[ABC,{A_1}{B_1}{C_1},{A_2}{B_2}{C_2},...,{A_n}{B_n}{C_n},...\] Tìm tổng \[P,{P_1},{P_2},...,{P_n},...\]

 Cho tam giác đều ABC cạnh a. Tam giác  (ảnh 1)

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1:

Gọi \[{a_n}\] là cạnh của tam giác \[{A_n}{B_n}{C_n}\] với n nguyên dương.

Ta cần chứng minh cạnh của tam giác bất kì \[{A_n}{B_n}{C_n}\] bằng\[{a_n} = \frac{a}{{{2^n}}}\] ới mọi số nguyên dương n   (*)

Vì\[{A_1},{B_1},{C_1}\] là trung điểm các cạnh của tam giác ABC nên \[{a_1} = \frac{a}{2}\]

Cạnh của tam giác\[{A_1}{B_1}{C_1}\] có cạnh là\[\frac{a}{2} = \frac{a}{{{2^1}}}\]

Giả sử (*) đúng với \[n = k\]

Tức là cạnh của tam giác\[{A_k}{B_k}{C_k}\]  là\[{a_k} = \frac{a}{{{2^k}}}\]

Ta có\[{A_{k + 1}}{B_{k + 1}}{C_{k + 1}}\] có cạnh bằng một nửa cạnh của tam giác\[{A_k}{B_k}{C_k}\] nên có cạnh là\[{a_{k + 1}} = \frac{{{a_k}}}{2} = \frac{1}{2}.\frac{a}{{{2^k}}} = \frac{a}{{{2^{k + 1}}}}\]

=>(*) đúng với \[n = k + 1\]

=>(*) đúng với mọi số nguyên dương n.

=>Chu vi của tam giác\[{A_n}{B_n}{C_n}\] như giả thiết là\[{P_n} = \frac{{3a}}{{{2^n}}}\]

Bước 2:

Như vậy\[P = 3a;{P_1} = \frac{{3a}}{2};{P_2} = \frac{{3a}}{{{2^2}}};...;{P_n} = \frac{{3a}}{{{2^n}}};...\]

Dãy số\[\left( {{P_n}} \right)\]  gồm\[P,{P_1},{P_2},...\] là cấp số nhân với số hạng đầu là\[P = 3a\] công bội\[q = \frac{1}{2}\]

\[ \Rightarrow P + {P_1} + {P_2} + ... = \frac{{3a}}{{1 - \frac{1}{2}}} = 6a\]

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tính giới hạn \[\lim \frac{{{n^2} - 3{n^3}}}{{2{n^3} + 5n - 2}}\].

Xem đáp án » 23/05/2022 5,304

Câu 2:

 

 Cho hình vuông \[{A_1}{B_1}{C_1}{D_1}\] có cạnh bằng a và có diện tích \[{S_1}\]. Nối bốn trung điểm \[{A_2},{B_2},{C_2},{D_2}\;\] ta được hình vuông thứ hai có diện tích \[{S_2}\]. Tiếp tục (ảnh 1)

Cho hình vuông \[{A_1}{B_1}{C_1}{D_1}\] có cạnh bằng a và có diện tích \[{S_1}\]. Nối bốn trung điểm \[{A_2},{B_2},{C_2},{D_2}\;\] ta được hình vuông thứ hai có diện tích \[{S_2}\]. Tiếp tục như thế, ta được hình vuông \[{A_3}{B_3}{C_3}{D_3}\] có diện tích \[{S_3}, \ldots \;\] Tính tổng \[{S_1} + {S_2} + \ldots \;\] bằng

Xem đáp án » 23/05/2022 1,530

Câu 3:

Cho \[n \in {N^ * }\] nếu \[|q| < 1\;\]thì:

Xem đáp án » 23/05/2022 1,342

Câu 4:

Cho \[{u_n} = \frac{{1 - 4n}}{{5n}}\]. Khi đó \[lim\,{u_n}\]bằng?

Xem đáp án » 23/05/2022 878

Câu 5:

Cho \[\lim {u_n} = L\]. Chọn mệnh đề đúng:

Xem đáp án » 23/05/2022 864

Câu 6:

Cho dãy số \[({u_n})\]với \[{u_n} = \frac{1}{{1.3}} + \frac{1}{{3.5}} + ... + \frac{1}{{\left( {2n - 1} \right).\left( {2n + 1} \right)}}\]

Khi đó \[lim\,{u_n}\] bằng?

Xem đáp án » 23/05/2022 735

Câu 7:

Giả sử \[\lim {u_n} = L,\lim {v_n} = M\]. Chọn mệnh đề đúng:

Xem đáp án » 23/05/2022 731

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store