Câu hỏi:
25/05/2022 4,747Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp \[\left\{ {1,2,3,4,5,6,7} \right\}\]Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng
Quảng cáo
Trả lời:
Số tự nhiên có 4 chữ số khác nhau là \[{\rm{A}}_7^4 = 840 \Rightarrow n\left( S \right) = 840\]
Xét phép thử: “Chọn ngẫu nhiên một số thuộc S. Ta có: \[n\left( {\rm{\Omega }} \right) = {\rm{C}}_{840}^1 = 840\]
Biến cố A:“số được chọn không có hai chữ số liên tiếp nào cùng chẵn”.
+ Trường hợp 1: Số được chọn có 4 chữ số đều là số lẻ, có \[4! = 24\]cách chọn.
+ Trường hợp 2: Số được chọn có 1 chữ số chẵn và 3 chữ số lẻ
Có \[C_3^1\] cách chọn 1 chữ số chẵn và \[C_4^3\] cách chọn 3 chữ số lẻ. Đồng thời có 4! cách sắp xếp 4 số được chọn nên có \[{\rm{C}}_3^1.{\rm{C}}_4^3.4! = 288\]cách chọn thỏa mãn.
+ Trường hợp 3: Số được chọn có 2 chữ số chẵn và 2 chữ số lẻ.
* Chọn 2 số chẵn, 2 số lẻ trong tập hợp \[\left\{ {1;\,2;\,3;\,4;\,5;\,6;\,7} \right\}\] có\[C_3^2.C_4^2\]cách.
Với mỗi bộ 2 số chẵn và 2 số lẻ được chọn, để hai số chẵn không đứng cạnh nhau thì ta có các trường hợp CLCL, CLLC, LCLC. Với mỗi trường hợp trên ta có 2! cách sắp xếp 2 số lẻ và 2! cách sắp xếp các số chẵn nên có \[3.2!.2!\] số thỏa mãn
* Suy ra trường hợp 3 có\[C_3^2.C_4^2.12 = 216\]cách chọn.
Suy ra \[n\left( A \right) = 24 + 288 + 216 = 528\]
Vậy xác suất cần tìm \[{\rm{P}}\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{528}}{{840}} = \frac{{22}}{{35}}\]
Đáp án cần chọn là: C
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án cần chọn là: B
Lời giải
Ta có:\[n({\rm{\Omega }}) = 6.6 = 36\]
Gọi A:”tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7”.
\[A = \{ (1;6);(2;5);(3;4);(4;3);(5;2);(6;1)\} \]
Do đó \[n(A) = 6\]
Vậy\[P(A) = \frac{6}{{36}} = \frac{1}{6}\]
Đáp án cần chọn là: B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.