Câu hỏi:

25/05/2022 4,732

Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp \[\left\{ {1,2,3,4,5,6,7} \right\}\]Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số tự nhiên có 4 chữ số khác nhau là \[{\rm{A}}_7^4 = 840 \Rightarrow n\left( S \right) = 840\]

Xét phép thử: “Chọn ngẫu nhiên một số thuộc S. Ta có: \[n\left( {\rm{\Omega }} \right) = {\rm{C}}_{840}^1 = 840\]

Biến cố A:“số được chọn không có hai chữ số liên tiếp nào cùng chẵn”.

+ Trường hợp 1: Số được chọn có 4 chữ số đều là số lẻ, có \[4! = 24\]cách chọn.

+ Trường hợp 2: Số được chọn có 1 chữ số chẵn và 3 chữ số lẻ

Có \[C_3^1\] cách chọn 1 chữ số chẵn và \[C_4^3\] cách chọn 3 chữ số lẻ. Đồng thời có 4! cách sắp xếp 4 số được chọn nên có \[{\rm{C}}_3^1.{\rm{C}}_4^3.4! = 288\]cách chọn thỏa mãn.

+ Trường hợp 3: Số được chọn có 2 chữ số chẵn và 2 chữ số lẻ.

* Chọn 2 số chẵn, 2 số lẻ trong tập hợp \[\left\{ {1;\,2;\,3;\,4;\,5;\,6;\,7} \right\}\] có\[C_3^2.C_4^2\]cách.

Với mỗi bộ 2 số chẵn và 2 số lẻ được chọn, để hai số chẵn không đứng cạnh nhau thì ta có các trường hợp CLCL, CLLC, LCLC. Với mỗi trường hợp trên ta có 2! cách sắp xếp 2 số lẻ và 2! cách sắp xếp các số chẵn nên có \[3.2!.2!\] số thỏa mãn

* Suy ra trường hợp 3 có\[C_3^2.C_4^2.12 = 216\]cách chọn.

Suy ra \[n\left( A \right) = 24 + 288 + 216 = 528\]

Vậy xác suất cần tìm \[{\rm{P}}\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{528}}{{840}} = \frac{{22}}{{35}}\]

Đáp án cần chọn là: C

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Cho A và \(\overline A \)là hai biến cố đối nhau. Chọn câu đúng:

Lời giải

Nếu A và \(\overline A \) là hai biến cố đối nhau thì\[P\left( {\bar A} \right) + P\left( A \right) = 1 \Leftrightarrow P\left( A \right) = 1 - P\left( {\bar A} \right)\]

Đáp án cần chọn là: B

Lời giải

Ta có:\[n({\rm{\Omega }}) = 6.6 = 36\]

Gọi A:”tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7”.

\[A = \{ (1;6);(2;5);(3;4);(4;3);(5;2);(6;1)\} \]

Do đó \[n(A) = 6\]

Vậy\[P(A) = \frac{6}{{36}} = \frac{1}{6}\]

Đáp án cần chọn là: B

Câu 3

Cho các chữ số 0,1,2,3,4,5,6. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số đã cho. Lấy ngẫu nhiên 2 số từ S, gọi A là biến cố: “tổng hai số lấy được là một số chẵn”. Xác suất của biến cố A là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay