Câu hỏi:
25/06/2022 282Cho hàm số \[y = \frac{3}{{1 - x}}\] thì x nhận các giá trị thuộc tập nào sau đây?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Bước 1:
\[y' = \frac{{3'\left( {1 - x} \right) - 3{{\left( {1 - x} \right)}^\prime }}}{{{{\left( {1 - x} \right)}^2}}} = \frac{{ - 3.\left( { - 1} \right)}}{{{{\left( {1 - x} \right)}^2}}} = \frac{3}{{{{\left( {1 - x} \right)}^2}}}\]
Bước 2:
Ta có\[y' = \frac{3}{{{{\left( {1 - x} \right)}^2}}} > 0\,\,\forall x \ne 1\]
⇒Tập nghiệm của bất phương trình y′<0 là \[\emptyset \].
</0 là \[\emptyset>
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hàm số \[y = \frac{{2{x^2} + 3x - 1}}{{{x^2} - 5x + 2}}\]. Đạo hàm y’ của hàm số là:
Câu 3:
Cho \[u = u(x)\] và \[v = v(x)\;\] là các hàm số có đạo hàm. Khẳng định nào sau đây sai
Câu 5:
Cho hàm số \[f\left( x \right) = \sqrt[3]{x}\]. Giá trị của f′(8) bằng:
Câu 6:
Đạo hàm của hàm số \[y = x\left( {2x - 1} \right)\left( {3x + 2} \right){\left( {\sin x - \cos x} \right)^\prime }\]là:
Câu 7:
Tìm m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\] có \[y\prime \le 0\forall x \in R\]
về câu hỏi!