Câu hỏi:
25/06/2022 200Cho hàm số y=f(x)) liên trục trên \(\mathbb{R}\) , \[f\prime (x) = 0\;\] có đúng hai nghiệm \[x = 1;x = 2\;\]. Hàm số \[g(x) = f({x^2} + 4x - m)\;\], có bao nhiêu giá trị nguyên của \[m \in [ - 21;21]\;\] để phương trình \[g\prime (x) = 0\;\] có nhiều nghiệm nhất?
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Bước 1:
\[\begin{array}{*{20}{l}}{f'(1) = f'(2) = 0}\\{g(x) = f\left( {{x^2} + 4x - m} \right)}\\{g'(x) = (2x + 4) \cdot f'\left( {{x^2} + 4x - m} \right)}\end{array}\]
Bước 2:
\[\begin{array}{l}g\prime (x) = 0\\ \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{f\prime ({x^2} + 4x - m) = 0(1)}\end{array}} \right.\end{array}\]
(1) có tối đa nghiệm khi và chỉ khi cả 2 phương trình
\(\left[ {\begin{array}{*{20}{c}}{{x^2} + 4x - m = 1}\\{{x^2} + 4x - m = 2}\end{array}} \right.\) đều có 2 nghiệm.
Bước 3:
\[{x^2} + 4x - m = 1\] có 2 nghiệm khi và chỉ khi
\[{\rm{\Delta '}} = m + 5 > 0 \Leftrightarrow m > - 5\]
\[{x^2} + 4x - m = 2\] có 2 nghiệm khi và chỉ khi
\[{\rm{\Delta '}} = m + 6 > 0 \Leftrightarrow m > - 6\]
Vậy m>−5
Bước 4:
Mà \[m \in \left[ { - 21;21} \right]\] nên m là các số nguyên từ -4 đến 21.
Số các giá trị của m là 21-(-4)+1=26.
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hàm số \[y = \frac{{2{x^2} + 3x - 1}}{{{x^2} - 5x + 2}}\]. Đạo hàm y’ của hàm số là:
Câu 3:
Cho \[u = u(x)\] và \[v = v(x)\;\] là các hàm số có đạo hàm. Khẳng định nào sau đây sai
Câu 5:
Cho hàm số \[f\left( x \right) = \sqrt[3]{x}\]. Giá trị của f′(8) bằng:
Câu 7:
Tìm m để hàm số \[y = \frac{{m{x^3}}}{3} - m{x^2} + \left( {3m - 1} \right)x + 1\] có \[y\prime \le 0\forall x \in R\]
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
về câu hỏi!