Câu hỏi:

27/06/2022 621 Lưu

Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a. Khoảng cách từ đỉnh AA của hình lập phương đó đến đường thẳng DB′ bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a. Khoảng cách từ đỉnh AA của hình lập phương đó đến đường thẳng DB′ bằngGọi H là chân đường vuông góc hạ từ A xuống DB′. (ảnh 1)

Gọi H là chân đường vuông góc hạ từ A xuống DB′.

Dễ thấy \[AD \bot \left( {ABB'A'} \right) \Rightarrow {\rm{\Delta }}ADB'\] vuông đỉnh A.

Lại có\[AD = a;AB' = a\sqrt 2 \Rightarrow \frac{1}{{A{H^2}}} = \frac{1}{{A{D^2}}} + \frac{1}{{A{B^{\prime 2}}}} \Rightarrow AH = \frac{{a\sqrt 6 }}{3}\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi O là chân đường cao của hình chóp nên O là tâm tam giác đáy.

Do đó O là trọng tâm tam giác ABC hay\[O \in AH\]

Ta có \[AO = \frac{2}{3}AH = \frac{2}{3}.3a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 \]

\[{\rm{d}}\left( {S,AH} \right) = SO = \sqrt {S{A^2} - A{O^2}} = a\]Đáp án cần chọn là: C

Lời giải

Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng  (ảnh 1)

Bước 1:

Gọi O là giao điểm của AC và BD.

S.ABCD là hình chóp đều nên O là hình chiếu của S lên (ABCD).

\[d\left( {S,\left( {ABCD} \right)} \right) = SO\]

Bước 2:

ABCD là hình vuông nên

\[\begin{array}{*{20}{l}}{AC = a\sqrt 2 .\sqrt 2 = 2a = > AO = a}\\{ = > S{O^2} = S{A^2} - A{O^2} = 2{a^2} - {a^2} = {a^2}}\\{ = > SO = a}\end{array}\]

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP