Khoảng cách từ một điểm đến một đường thẳng

  • 598 lượt thi

  • 13 câu hỏi

  • 30 phút

Câu 1:

Cho hình chóp S.ABC trong đó SA,AB,BC đôi một vuông góc và SA=AB=BC=1. Khoảng cách giữa hai điểm S và C nhận giá trị nào trong các giá trị sau ?

Xem đáp án

Do\(\left\{ {\begin{array}{*{20}{c}}{SA \bot AB}\\{SA \bot BC}\end{array}} \right.\) nên\[SA \bot (ABC) \Rightarrow SA \bot AC\]

Như vậy \[SC = \sqrt {S{A^2} + A{C^2}} = \sqrt {S{A^2} + A{B^2} + B{C^2}} = \sqrt 3 \]

Cho hình chóp S.ABC trong đó SA,AB,BC đôi một vuông góc và SA=AB=BC=1. Khoảng cách giữa hai điểm S và C nhận giá trị nào trong các giá trị sau ? (ảnh 1)

Đáp án cần chọn là: B


Câu 2:

Cho hình chóp A.BCD có cạnh \[AC \bot (BCD)\] và BCD  là tam giác đều cạnh bằng a. Biết \(AC = a\sqrt 2 \) và M là trung điểm của BD. Khoảng cách từ C đến đường thẳng AM bằng

Xem đáp án

Dựng hình chiếu H của C trên AM

Do \[\Delta BCD\] đều cạnh aa nên đường cao \[MC = \frac{{a\sqrt 3 }}{2}\]

\[d\left( {C,AM} \right) = CH = \frac{{AC.MC}}{{\sqrt {A{C^2} + M{C^2}} }} = \frac{{a\sqrt {66} }}{{11}}\]Cho hình chóp A.BCD có cạnh  (ảnh 1)

Đáp án cần chọn là: C


Câu 3:

Hình chóp đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Gọi H là trung điểm của BC, khoảng cách từ S đến AH bằng:

Xem đáp án

Gọi O là chân đường cao của hình chóp nên O là tâm tam giác đáy.

Do đó O là trọng tâm tam giác ABC hay\[O \in AH\]

Ta có \[AO = \frac{2}{3}AH = \frac{2}{3}.3a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 \]

\[{\rm{d}}\left( {S,AH} \right) = SO = \sqrt {S{A^2} - A{O^2}} = a\]Đáp án cần chọn là: C


Câu 4:

Cho hình chóp A.BCDcó cạnh \[AC \bot (BCD)\]và BCD là tam giác đều cạnh bằng a. Biết \(AC = a\sqrt 2 \), khoảng cách từ A đến đường thẳng BD bằng:

Xem đáp án

Cho hình chóp A.BCDcó cạnh  (ảnh 1)

Gọi M là trung điểm của BD.

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{AC \bot BD}\\{CM \bot BD}\end{array}} \right. \Rightarrow BD \bot AM\) (Định lý 3 đường vuông góc)

\[ \Rightarrow d\left( {A;BD} \right) = AM\]

\[CM = \frac{{a\sqrt 3 }}{2}\] (vì tam giác BCD  đều).

Ta có: \[AM = \sqrt {A{C^2} + M{C^2}} = \sqrt {2{a^2} + \frac{{3{a^2}}}{4}} = \frac{{a\sqrt {11} }}{2}\]

Đáp án cần chọn là: D


Câu 5:

Cho hình chóp S.ABCD có \[SA \bot \left( {ABCD} \right),\] đáy ABCD là hình thoi cạnh bằng a và \(\widehat B = {60^0}\)Biết SA=2a. Tính khoảng cách từ A đến SC.

Xem đáp án

Cho hình chóp S.ABCD có (ảnh 1)

 

Kẻ \[AH \bot SC\]  khi đó \[d\left( {A,SC} \right) = AH\]

ABCD là hình thoi cạnh bằng a và\[\hat B = {60^ \circ } \Rightarrow {\rm{\Delta }}ABC\] đều nên\[AC = a\]

Trong tam giác vuông SAC ta có:

\[\frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{C^2}}}\]

\[ \Rightarrow AH = \frac{{SA.AC}}{{\sqrt {S{A^2} + A{C^2}} }} = \frac{{2a.a}}{{\sqrt {4{a^2} + {a^2}} }} = \frac{{2\sqrt 5 a}}{5}\]

Đáp án cần chọn là: C


0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận