Câu hỏi:

27/06/2022 231 Lưu

Cho hình chóp tứ giác đều có cạnh đáy bằng aa và góc hợp bởi một cạnh bên và mặt đáy bằng α. Khoảng cách từ tâm của đáy đến một cạnh bên bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp tứ giác đều có cạnh đáy bằng aa và góc hợp bởi một cạnh bên và mặt đáy bằng α. Khoảng cách từ tâm của đáy đến một cạnh bên bằng (ảnh 1)

\[SO \bot (ABCD),\;\]O là tâm của hình vuông ABCD.

Kẻ \[OH \bot SD\], khi đó\[d\left( {O;SD} \right) = OH,\alpha = \widehat {SDO}\]

\[OD = \frac{1}{2}BD = \frac{{a\sqrt 2 }}{2} \Rightarrow OH = OD\sin \alpha = \frac{{a\sqrt 2 \sin \alpha }}{2}\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi O là chân đường cao của hình chóp nên O là tâm tam giác đáy.

Do đó O là trọng tâm tam giác ABC hay\[O \in AH\]

Ta có \[AO = \frac{2}{3}AH = \frac{2}{3}.3a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 \]

\[{\rm{d}}\left( {S,AH} \right) = SO = \sqrt {S{A^2} - A{O^2}} = a\]Đáp án cần chọn là: C

Lời giải

Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng  (ảnh 1)

Bước 1:

Gọi O là giao điểm của AC và BD.

S.ABCD là hình chóp đều nên O là hình chiếu của S lên (ABCD).

\[d\left( {S,\left( {ABCD} \right)} \right) = SO\]

Bước 2:

ABCD là hình vuông nên

\[\begin{array}{*{20}{l}}{AC = a\sqrt 2 .\sqrt 2 = 2a = > AO = a}\\{ = > S{O^2} = S{A^2} - A{O^2} = 2{a^2} - {a^2} = {a^2}}\\{ = > SO = a}\end{array}\]

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP