Câu hỏi:

27/06/2022 521

Cho tứ diện SABC trong đó SA, SB, SC vuông góc với nhau từng đôi một vàSA=3a, SB=a,SC=2a. Khoảng cách từ A đến đường thẳng BC bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho tứ diện SABC trong đó SA, SB, SC vuông góc với nhau từng đôi một vàSA=3a, SB=a,SC=2a. Khoảng cách từ A đến đường thẳng BC bằng: (ảnh 1)

+ Dựng\[AH \bot BC \Rightarrow d\left( {A,BC} \right) = AH\]

+ \(\left\{ {\begin{array}{*{20}{c}}{AS \bot (SBC) \supset BC \Rightarrow AS \bot BC}\\{AH \bot BC}\end{array}} \right.\),AHcắt AS cùng nằm trong (SAH).

\[ \Rightarrow BC \bot \left( {SAH} \right) \supset SH \Rightarrow BC \bot SH\]

Xét trong \[{\rm{\Delta }}SBC\] vuông tại S có SH là đường cao ta có:

\[\frac{1}{{S{H^2}}} = \frac{1}{{S{B^2}}} + \frac{1}{{S{C^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{4{a^2}}} = \frac{5}{{4{a^2}}} \Rightarrow S{H^2} = \frac{{4{a^2}}}{5} \Rightarrow SH = \frac{{2a\sqrt 5 }}{5}\]

+ Ta dễ chứng minh được\[AS \bot \left( {SBC} \right) \supset SH \Rightarrow AS \bot SH \Rightarrow {\rm{\Delta }}ASH\]  vuông tại S.

Áp dụng định lý Pi-ta-go cho \[{\rm{\Delta }}ASH\] vuông tại S ta có:

\[A{H^2} = S{A^2} + S{H^2} = 9{a^2} + \frac{{4{a^2}}}{5} = \frac{{49{a^2}}}{5} \Rightarrow AH = \frac{{7a\sqrt 5 }}{5}\]

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi O là chân đường cao của hình chóp nên O là tâm tam giác đáy.

Do đó O là trọng tâm tam giác ABC hay\[O \in AH\]

Ta có \[AO = \frac{2}{3}AH = \frac{2}{3}.3a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 \]

\[{\rm{d}}\left( {S,AH} \right) = SO = \sqrt {S{A^2} - A{O^2}} = a\]Đáp án cần chọn là: C

Lời giải

Cho hình chóp đều S.ABCD có tất cả các cạnh đều bằng  (ảnh 1)

Bước 1:

Gọi O là giao điểm của AC và BD.

S.ABCD là hình chóp đều nên O là hình chiếu của S lên (ABCD).

\[d\left( {S,\left( {ABCD} \right)} \right) = SO\]

Bước 2:

ABCD là hình vuông nên

\[\begin{array}{*{20}{l}}{AC = a\sqrt 2 .\sqrt 2 = 2a = > AO = a}\\{ = > S{O^2} = S{A^2} - A{O^2} = 2{a^2} - {a^2} = {a^2}}\\{ = > SO = a}\end{array}\]

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP