Câu hỏi:

27/06/2022 225

Tìm tập hợp tất cả các tham số m sao cho phương trình \[{4^{{x^2} - 2x + 1}} - m{.2^{{x^2} - 2x + 2}} + 3m - 2 = 0\;\]có 4 nghiệm phân biệt.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt \[t = {2^{{x^2} - 2x + 1}} \ge 1\]phương trình đã cho trở thành\[{t^2} - 2mt + 3m - 2 = 0\left( * \right)\]

Với t=1 ta tìm được 1 giá trị của x

Với t>1 ta tìm được 2 giá trị của x

Do đó, phương trình đã cho có 4 nghiệm phân biệt

⇔ Phương trình (*) có 2 nghiệm phân biệt lớn hơn 1

\(\left\{ {\begin{array}{*{20}{c}}{\Delta \prime = {m^2} - (3m - 2) > 0}\\{({t_1} - 1) + ({t_2} - 1) > 0}\\{({t_1} - 1)({t_2} - 1) > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{m^2} - (3m - 2) > 0}\\{{t_1} + {t_2} > 2}\\{{t_1}{t_2} - \left( {{t_1} + {t_2}} \right) + 1 > 0}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{m^2} - 3m + 2 > 0}\\{2m > 2}\\{3m - 2 - 2m + 1 > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\left[ {\begin{array}{*{20}{c}}{m > 2}\\{m < 1}\end{array}} \right.}\\{m > 1}\end{array}} \right. \Leftrightarrow m > 2\)</>

Đáp án cần chọn là: D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[{3^{{x^4} - 3{x^2}}} = 81 = {3^4} \Leftrightarrow {x^4} - 3{x^2} - 4 = 0 \Leftrightarrow {x^2} = 4 \Leftrightarrow x = \pm 2\]

Tổng các nghiệm sẽ bằng 0.

Đáp án cần chọn là: A

Câu 2

Phương trình \[{4^{2x + 5}} = {2^{2 - x}}\] có nghiệm là:

Lời giải

\[{4^{2{\rm{x}} + 5}} = {2^{2 - x}} \Leftrightarrow {2^{4{\rm{x}} + 10}} = {2^{2 - x}} \Leftrightarrow 4{\rm{x}} + 10 = 2 - x \Leftrightarrow 5{\rm{x}} = - 8 \Leftrightarrow x = \frac{{ - 8}}{5}\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Tìm tập hợp tất cả các nghiệm của phương trình \[{2^{{x^2} + x - 1}} = \frac{1}{2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay