Câu hỏi:

27/06/2022 416 Lưu

Trong các phương trình sau đây, phương trình nào có nghiệm?

A.\[{x^{\frac{2}{3}}} + 5 = 0\]

B. \[{(3x)^{\frac{1}{3}}} + {\left( {x - 4} \right)^{\frac{2}{5}}} = 0\]

C. \[\sqrt {4x - 8} + 2 = 0\]

D. \[2{x^{\frac{1}{2}}} - 3 = 0\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ý A: Điều kiện x > 0. Có \[{x^{\frac{2}{3}}} + 5 > 0,\forall x > 0\] nên phương trình vô nghiệm

Ý B: Điều kiện x > 4. Có \[{\left( {3x} \right)^{\frac{1}{3}}} + {\left( {x - 4} \right)^{\frac{2}{3}}} > 0,\forall x > 4\] nên phương trình vô nghiệm

Ý C: Điều kiện \[x \ge 2\]. Có \[\sqrt {4x - 8} + 2 > 0,\forall x \ge 2\]nên phương trình vô nghiệm

Ý D: Điều kiện x > 0. Có \[2{x^{\frac{1}{2}}} - 3 = 0 \Leftrightarrow {x^{\frac{1}{2}}} = \frac{3}{2} \Leftrightarrow x = {\log _{\frac{1}{2}}}\frac{3}{2}\] (thỏa mãn)

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[{3^{{x^4} - 3{x^2}}} = 81 = {3^4} \Leftrightarrow {x^4} - 3{x^2} - 4 = 0 \Leftrightarrow {x^2} = 4 \Leftrightarrow x = \pm 2\]

Tổng các nghiệm sẽ bằng 0.

Đáp án cần chọn là: A

Câu 2

A.\[\frac{{ - 8}}{5}\]

B. 3

C. \[\frac{8}{5}\]

D. \[\frac{{12}}{5}\]

Lời giải

\[{4^{2{\rm{x}} + 5}} = {2^{2 - x}} \Leftrightarrow {2^{4{\rm{x}} + 10}} = {2^{2 - x}} \Leftrightarrow 4{\rm{x}} + 10 = 2 - x \Leftrightarrow 5{\rm{x}} = - 8 \Leftrightarrow x = \frac{{ - 8}}{5}\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\[\left\{ { - 1;2} \right\}.\]

B. \[\left\{ {0;1} \right\}.\]

C. \[\left\{ { - 1;0} \right\}.\]

D. \[\left\{ { - 2;1} \right\}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP