Cho các số thực không âm x,y,z thỏa mãn \[{5^x} + {25^y} + {125^z} = 2020\]. Giá trị nhỏ nhất của biếu thức \[T = \frac{x}{6} + \frac{y}{3} + \frac{z}{2}\] là
Quảng cáo
Trả lời:
Đặt \(\left\{ {\begin{array}{*{20}{c}}{a = {5^x}}\\{b = {5^{2y}}}\\{c = {5^{3z}}}\end{array}} \right.\) với\[x,\,\,y,\,\,z \ge 0\] thì\[a,\,\,b,\,\,c \ge 1\]
Theo bài ra ta có\[a + b + c = 2020 \Rightarrow 1 \le a,b,c \le 2018\]
Ta có:
\[(a - 1)(b - 1)(c - 1) \ge 0\]
\[ \Leftrightarrow (ab - a - b + 1)(c - 1) \ge 0\]
\[ \Leftrightarrow abc + (a + b + c) - (ab + bc + ca) - 1 \ge 0(1)\]
\[(a - 2018)(b - 2018)(c - 2018) \le 0\]
\[ \Leftrightarrow (ab - 2018(a + b) + 20182)(c - 2018) \le 0\]
\[ \Leftrightarrow abc + {2018^2}(a + b + c) - 2018(ab + bc + ca) - {2018^3} \le 0(2)\]
Lấy (1) nhân với 2018 rồi trừ đi (2) ta được:
\[2017abc + (2018 - {2018^2})(a + b + c) - 2018 + {2018^3} \ge 0\]
\[ \Leftrightarrow 2017abc + 2018(1 - 2018)(a + b + c) + {2018^3} - 2018 \ge 0\]
\[ \Leftrightarrow 2017abc - 2017.2018.(a + b + c) + {2018^3} - 2018 \ge 0\]
\[ \Leftrightarrow {2017.5^x}{.5^{2y}}{.5^{3z}} - 2017.2018.2020 + {2018^3} - 2018 \ge 0\]
\[ \Leftrightarrow {2017.5^x}{.5^{2y}}{.5^{3z}} + 2018({2018^2} - 2017.2020 - 1) \ge 0\]
\[ \Leftrightarrow {2017.5^x}{.5^{2y}}{.5^{3z}} - 2017.2018 \ge 0\]
\[ \Leftrightarrow {5^x}{.5^{2y}}{.5^{3z}} - 2018 \ge 0\]
\[ \Leftrightarrow {5^x}{.5^{2y}}{.5^{3z}} \ge 2018\]
\[ \Leftrightarrow {5^{x + 2y + 3z}} \ge 2018\]
\[ \Leftrightarrow x + 2y + 3z \ge lo{g_5}2018\]
\[ \Leftrightarrow \frac{{x + 2y + 3z}}{6} \ge \frac{1}{6}lo{g_5}2018\]
\[ \Leftrightarrow \frac{x}{6} + \frac{y}{3} + \frac{z}{2} \ge \frac{1}{6}lo{g_5}2018\]
Vậy giá trị nhỏ nhất của biểu tức \[T = \frac{x}{6} + \frac{y}{3} + \frac{z}{2}\] là\[\frac{1}{6}{\log _5}2018\]
Đáp án cần chọn là: B
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\[{3^{{x^4} - 3{x^2}}} = 81 = {3^4} \Leftrightarrow {x^4} - 3{x^2} - 4 = 0 \Leftrightarrow {x^2} = 4 \Leftrightarrow x = \pm 2\]
Tổng các nghiệm sẽ bằng 0.
Đáp án cần chọn là: A
Lời giải
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.