Câu hỏi:
27/06/2022 249Có bao nhiêu giá trị nguyên dương của tham số m để phương trình \[{16^x} - {2.12^x} + \left( {m - 2} \right){.9^x} = 0\]có nghiệm dương?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có\[{16^x} - {2.12^x} + \left( {m - 2} \right){.9^x} = 0\] (1)
\[ \Leftrightarrow {\left( {\frac{4}{3}} \right)^{2x}} - 2.{\left( {\frac{4}{3}} \right)^x} + m - 2 = 0\] chia cả hai vế cho\[{9^x}\]
Đặt\[{\left( {\frac{4}{3}} \right)^x} = t \Rightarrow x = {\log _{\frac{4}{3}}}t > 0 \Leftrightarrow t > 1\]
Khi đó ta có phương trình \[{t^2} - 2t + m - 2 = 0\left( * \right)\]
Để phương trình (1) có nghiệm dương thì phương trình (*) có nghiệm lớn hơn 1.
(*) có nghiệm\[ \Leftrightarrow {\rm{\Delta '}} = 1 - m + 2 \ge 0 \Leftrightarrow 3 - m \ge 0 \Leftrightarrow m \le 3\]
Với \[m \le 3\] thì (∗) có nghiệm \[{t_1} = 1 - \sqrt {3 - m} ,{t_2} = 1 + \sqrt {3 - m} \]
Để (*) có nghiệm lớn hơn 1 thì
\[1 + \sqrt {3 - m} > 1 \Leftrightarrow \sqrt {3 - m} > 0 \Leftrightarrow 3 - m > 0 \Leftrightarrow m < 3\]
Mà m nguyên dương nên \[m \in \left\{ {1;2} \right\}\]Vậy có 2 giá trị của mm thỏa mãn.
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Đề thi THPT QG - 2021 - mã 101
Có bao nhiêu số nguyên y sao cho tồn tại \[x \in (\frac{1}{3};3)\;\] thỏa mãn \[27{\,^{3{x^2} + xy}} = \left( {1 + xy} \right){27^{9x}}\]?
Câu 4:
Phương trình \[{2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x\] có tổng các nghiệm gần nhất với số nào dưới đây:
Câu 5:
Phương trình \[x({2^{x - 1}} + 4) = {2^{x + 1}} + {x^2}\]có tổng các nghiệm bằng
Câu 6:
Số nghiệm thực phân biệt của phương trình \[{2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} = 4\]là:
Câu 7:
Cho \[{4^x} + {4^{ - x}} = 7\]. Khi đó biểu thức \[P = \frac{{5 - {2^x} - {2^{ - x}}}}{{8 + {{4.2}^x} + {{4.2}^{ - x}}}} = \frac{a}{b}\] với \[\frac{a}{b}\] tối giản và \[a,b \in \mathbb{Z}\]. Tích a.b có giá trị bằng
về câu hỏi!