Câu hỏi:

13/07/2024 249

Cho các số dương x,y thỏa mãn \[{2^{{x^3} - y + 1}} = \frac{{2x + y}}{{2{x^3} + 4x + 4}}\]. Giá trị nhỏ nhất của biểu thức \[P = \frac{7}{y} + \frac{{{x^3}}}{7}\] có dạng \(\frac{a}{b}\). Tính a−b.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1: Sử dụng hàm đặc trưng, tìm biểu diễn \[{x^3}\] theo y.

Ta có\[{2^{{x^3} - y + 1}} = \frac{{2x + y}}{{2{x^3} + 4x + 4}}\]

\[\begin{array}{*{20}{l}}{ \Leftrightarrow {2^{{x^3} + 2x + 2 - 2x - y - 1}} = \frac{{2x + y}}{{2{x^3} + 4x + 4}}}\\{ \Leftrightarrow \frac{{{2^{{x^3} + 2x + 2}}}}{{{2^{2x + y}}.2}} = \frac{{2x + y}}{{2\left( {{x^3} + 2x + 2} \right)}}}\\{ \Leftrightarrow {2^{{x^3} + 2x + 2}}\left( {{x^3} + 2x + 2} \right) = {2^{2x + y}}.\left( {2x + y} \right)\,\,\,\left( * \right)}\end{array}\]

Xét \[f\left( t \right) = {2^t}.t,\,\,t > 0\]ta có\[f'\left( t \right) = {2^t} + t{.2^t}.\ln 2 > 0;\,\,\forall t > 0\].Do đó hàm số f(t) đồng biến trên \[\left( {0; + \infty } \right)\]Do đó \[\left( * \right) \Leftrightarrow {x^3} + 2x + 2 = 2x + y \Rightarrow {x^3} = y - 2\]Bước 2: Thế vào biểu thức P, sử dụng BĐT Cô-si tìm GTNN của biểu thức P.

Khi đó

\[P = \frac{7}{y} + \frac{{{x^3}}}{7} = \frac{7}{y} + \frac{{y - 2}}{7} = \frac{7}{y} + \frac{y}{7} - \frac{2}{7} \ge 2\sqrt {\frac{7}{y}.\frac{y}{7}} - \frac{2}{7} = \frac{{12}}{7}\]

Dấu “=” xảy ra \[ \Leftrightarrow \frac{7}{y} = \frac{y}{7} \Leftrightarrow y = 7\,\,\left( {do\,\,y > 0} \right)\]

\[{P_{\min }} = \frac{{12}}{7} \Leftrightarrow x = \sqrt[3]{5},\,\,y = 7\]

Vậy\[a = 12,b = 7 = > a - b = 5\]

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tổng các nghiệm của phương trình \[{3^{{x^4} - 3{x^2}}} = 81\]

Xem đáp án » 27/06/2022 9,273

Câu 2:

Phương trình \[{4^{2x + 5}} = {2^{2 - x}}\] có nghiệm là:

Xem đáp án » 27/06/2022 1,556

Câu 3:

Đề thi THPT QG - 2021 - mã 101

Có bao nhiêu số nguyên y sao cho tồn tại \[x \in (\frac{1}{3};3)\;\] thỏa mãn \[27{\,^{3{x^2} + xy}} = \left( {1 + xy} \right){27^{9x}}\]?

Xem đáp án » 27/06/2022 1,175

Câu 4:

Số nghiệm thực phân biệt của phương trình \[{2^{x + \frac{1}{{4x}}}} + {2^{\frac{x}{4} + \frac{1}{x}}} = 4\]là:

Xem đáp án » 27/06/2022 1,115

Câu 5:

Phương trình \[{2^{23{x^3}}}{.2^x} - {1024^{{x^2}}} + 23{x^3} = 10{x^2} - x\] có tổng các nghiệm gần nhất với số nào dưới đây:

Xem đáp án » 27/06/2022 749

Câu 6:

Tìm tập hợp tất cả các nghiệm của phương trình \[{2^{{x^2} + x - 1}} = \frac{1}{2}\].

Xem đáp án » 27/06/2022 684

Câu 7:

Phương trình  \[x({2^{x - 1}} + 4) = {2^{x + 1}} + {x^2}\]có tổng các nghiệm bằng

Xem đáp án » 27/06/2022 544
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua