Câu hỏi:

13/07/2024 290

Cho các số dương x,y thỏa mãn \[{2^{{x^3} - y + 1}} = \frac{{2x + y}}{{2{x^3} + 4x + 4}}\]. Giá trị nhỏ nhất của biểu thức \[P = \frac{7}{y} + \frac{{{x^3}}}{7}\] có dạng \(\frac{a}{b}\). Tính a−b.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Bước 1: Sử dụng hàm đặc trưng, tìm biểu diễn \[{x^3}\] theo y.

Ta có\[{2^{{x^3} - y + 1}} = \frac{{2x + y}}{{2{x^3} + 4x + 4}}\]

\[\begin{array}{*{20}{l}}{ \Leftrightarrow {2^{{x^3} + 2x + 2 - 2x - y - 1}} = \frac{{2x + y}}{{2{x^3} + 4x + 4}}}\\{ \Leftrightarrow \frac{{{2^{{x^3} + 2x + 2}}}}{{{2^{2x + y}}.2}} = \frac{{2x + y}}{{2\left( {{x^3} + 2x + 2} \right)}}}\\{ \Leftrightarrow {2^{{x^3} + 2x + 2}}\left( {{x^3} + 2x + 2} \right) = {2^{2x + y}}.\left( {2x + y} \right)\,\,\,\left( * \right)}\end{array}\]

Xét \[f\left( t \right) = {2^t}.t,\,\,t > 0\]ta có\[f'\left( t \right) = {2^t} + t{.2^t}.\ln 2 > 0;\,\,\forall t > 0\].Do đó hàm số f(t) đồng biến trên \[\left( {0; + \infty } \right)\]Do đó \[\left( * \right) \Leftrightarrow {x^3} + 2x + 2 = 2x + y \Rightarrow {x^3} = y - 2\]Bước 2: Thế vào biểu thức P, sử dụng BĐT Cô-si tìm GTNN của biểu thức P.

Khi đó

\[P = \frac{7}{y} + \frac{{{x^3}}}{7} = \frac{7}{y} + \frac{{y - 2}}{7} = \frac{7}{y} + \frac{y}{7} - \frac{2}{7} \ge 2\sqrt {\frac{7}{y}.\frac{y}{7}} - \frac{2}{7} = \frac{{12}}{7}\]

Dấu “=” xảy ra \[ \Leftrightarrow \frac{7}{y} = \frac{y}{7} \Leftrightarrow y = 7\,\,\left( {do\,\,y > 0} \right)\]

\[{P_{\min }} = \frac{{12}}{7} \Leftrightarrow x = \sqrt[3]{5},\,\,y = 7\]

Vậy\[a = 12,b = 7 = > a - b = 5\]

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[{3^{{x^4} - 3{x^2}}} = 81 = {3^4} \Leftrightarrow {x^4} - 3{x^2} - 4 = 0 \Leftrightarrow {x^2} = 4 \Leftrightarrow x = \pm 2\]

Tổng các nghiệm sẽ bằng 0.

Đáp án cần chọn là: A

Câu 2

Phương trình \[{4^{2x + 5}} = {2^{2 - x}}\] có nghiệm là:

Lời giải

\[{4^{2{\rm{x}} + 5}} = {2^{2 - x}} \Leftrightarrow {2^{4{\rm{x}} + 10}} = {2^{2 - x}} \Leftrightarrow 4{\rm{x}} + 10 = 2 - x \Leftrightarrow 5{\rm{x}} = - 8 \Leftrightarrow x = \frac{{ - 8}}{5}\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Tìm tập hợp tất cả các nghiệm của phương trình \[{2^{{x^2} + x - 1}} = \frac{1}{2}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay