Số nghiệm của hệ \(\left\{ {\begin{array}{*{20}{c}}{{2^x} = 2y}\\{{2^y} = 2x}\end{array}} \right.\)là:
A.2
B.3
C.1
D.0
Quảng cáo
Trả lời:

Trừ phương trình 1 cho 2 vế với vế ta được:
\[{2^x} - {2^y} = 2y - 2x \Leftrightarrow {2^x} + 2x = {2^y} + 2y\]
Xét hàm\[f\left( t \right) = {2^t} + 2t\]có\[f'\left( t \right) = {2^t}\ln 2 + 2 > 0,\forall t \in R\]nên hàm số f(t) đồng biến trên R.
Do đó \[f\left( x \right) = f\left( y \right) \Leftrightarrow x = y\]
Thay y=x vào phương trình\[{2^x} = 2y\]ta được\[{2^x} = 2x \Leftrightarrow {2^x} - 2x = 0\]
Xét hàm\[y = g\left( x \right) = {2^x} - 2x\]có \[g'\left( x \right) = {2^x}\ln 2 - 2 = 0 \Leftrightarrow x = {\log _2}\frac{2}{{\ln 2}}\]
Suy ra\[g'\left( x \right) > 0 \Leftrightarrow x > {\log _2}\frac{2}{{\ln 2}};g'\left( x \right) < 0 \Leftrightarrow x < {\log _2}\frac{2}{{\ln 2}}\]
\[ \Rightarrow x = {\log _2}\frac{2}{{\ln 2}}\]là điểm cực tiểu của hàm số
\[ \Rightarrow {y_{CT}} = {2^{{{\log }_2}\frac{2}{{\ln 2}}}} - 2{\log _2}\frac{2}{{\ln 2}} = \frac{2}{{\ln 2}} - 2{\log _2}\frac{2}{{\ln 2}} < 0\]
Mặt khác\[\mathop {\lim }\limits_{x \to \pm \infty } g(x) = + \infty \]suy ra đường thẳng y=0 cắt đồ thị hàm số y=g(x) tại 2 điểm phân biệt.
Vậy số nghiệm của hệ là 2
Đáp án cần chọn là: A
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.980
B.1620
C.\[\frac{{1700}}{9}\]
D.−1990
Lời giải
Điều kiện\[x > 0;y > 0\]
\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{logx - logy = 2}\\{x - 10y = 900}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{log\frac{x}{y} = 2}\\{x - 10y = 900}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{x}{y} = 100}\\{x - 10y = 900}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 100y}\\{x - 10y = 900}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 100y}\\{100y - 10y = 900}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 1000}\\{y = 10}\end{array}} \right.\end{array}\)
Vậy \[A = x - 2y = 1000 - 2.10 = 980\]
Đáp án cần chọn là: A
Câu 2
A.\[{x_0} = {y_0}\]
B. \[{x_0} > {y_0}\]
C. \[{x_0} < {y_0}\]
D. \[{x_0} = {y_0} + 2\]
Lời giải
Điều kiện:\(\left\{ {\begin{array}{*{20}{c}}{0 < x \ne 1;0 < x + 1 \ne 1}\\{y > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0 < x \ne 1}\\{y > 0}\end{array}} \right.\)</></>
Khi đó hệ
\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y = {x^2}}\\{y + 23 = {{(x + 1)}^3}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y = {x^2}}\\{{x^2} + 23 = {{(x + 1)}^3}}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y = {x^2}}\\{(x - 2)({x^2} + 4x + 11) = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 2 = {x_0}}\\{y = 4 = {y_0}}\end{array}} \right.\end{array}\)
Do đó \[{x_0} < {y_0}\]
Đáp án cần chọn là: C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.Điều kiện xác định của hệ phương trình là x>y>0.
B.Hệ phương trình đã cho có 2 nghiệm.
C.Hệ phương trình đã cho có 1 nghiệm duy nhất \[\left( {x;y} \right) = \left( { - 1; - 2} \right)\]
D.Hệ phương trình đã cho vô nghiệm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\(\left\{ {\begin{array}{*{20}{c}}{x > 1}\\{y > 1}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{x > 1 \vee x < - 1}\\{y > 1}\end{array}} \right.\)
C. \[x > y > 1\]
D. \(\left[ {\begin{array}{*{20}{c}}{x > 1}\\{x < - 1}\end{array}} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.