Hệ phương trình mũ và logarit

  • 635 lượt thi

  • 11 câu hỏi

  • 30 phút

Câu 1:

Điều kiện xác định của hệ phương trình \[\left\{ {\begin{array}{*{20}{c}}{lo{g_2}({x^2} - 1) + lo{g_2}(y - 1) = 1}\\{{3^x} = {3^y}}\end{array}} \right.\] là:

Xem đáp án

Điều kiện xác định:\[\left\{ {\begin{array}{*{20}{c}}{{x^2} - 1 > 0}\\{y - 1 > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x > 1 \vee x < - 1}\\{y > 1}\end{array}} \right.\]</>

Đáp án cần chọn là: B


Câu 2:

Số nghiệm của hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + 2y = - 1}\\{{4^{x + {y^2}}} = 16}\end{array}} \right.\)  là:

Xem đáp án

Ta có:

\(\left\{ {\begin{array}{*{20}{c}}{x + 2y = - 1}\\{{4^{x + {y^2}}} = 16}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x + 2y = - 1}\\{x + {y^2} = 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = - 2y - 1}\\{{y^2} - 2y - 3 = 0}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = - 2y - 1}\\{y = - 1;y = 3}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 1;y = - 1}\\{x = - 7;y = 3}\end{array}} \right.\)

Vậy hệ đã cho có 2 nghiệm phân biệt.

Đáp án cần chọn là: C


Câu 3:

Gọi (x;y) là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{logx - logy = 2}\\{x - 10y = 900}\end{array}} \right.\), khi đó giá trị biểu thức \[A = x - 2y\;\] là:

Xem đáp án

Điều kiện\[x > 0;y > 0\]

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{logx - logy = 2}\\{x - 10y = 900}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{log\frac{x}{y} = 2}\\{x - 10y = 900}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\frac{x}{y} = 100}\\{x - 10y = 900}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 100y}\\{x - 10y = 900}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 100y}\\{100y - 10y = 900}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 1000}\\{y = 10}\end{array}} \right.\end{array}\)

Vậy \[A = x - 2y = 1000 - 2.10 = 980\]

Đáp án cần chọn là: A


Câu 4:

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{2^x}{{.9}^y} = 162}\\{{3^x}{{.4}^y} = 48}\end{array}} \right.\)có tất cả bao nhiêu nghiệm (x;y)?

Xem đáp án

Nhân vế với vế của hai phương trình ta được:

\[\left( {{2^x}{{.9}^y}} \right).\left( {{3^x}{{.4}^y}} \right) = 162.48 \Leftrightarrow {6^x}{.36^y} = 162.48 \Leftrightarrow {6^x}{.6^{2y}} = {6^5} \Leftrightarrow x + 2y = 5\]

Khi đó

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{x + 2y = 5}\\{{3^x}{{.4}^y} = 48}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 5 - 2y}\\{{3^{5 - 2y}}{4^y} = 48}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 5 - 2y}\\{\frac{{{3^5}}}{{{9^y}}}{{.4}^y} = {2^4}.3}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 5 - 2y}\\{{{\left( {\frac{2}{3}} \right)}^{2y}} = {{\left( {\frac{2}{3}} \right)}^4}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y = 2}\\{x = 1}\end{array}} \right.\end{array}\)

Vậy hệ có nghiệm duy nhất (1;2).

Đáp án cần chọn là: B


Câu 5:

Gọi \[\left( {{x_0};{y_0}} \right)\]là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{c}}{{{\log }_x}y = 2}\\{lo{g_{x + 1}}\left( {y + 23} \right) = 3}\end{array}} \right.\). Mệnh đề nào đúng?

Xem đáp án

Điều kiện:\(\left\{ {\begin{array}{*{20}{c}}{0 < x \ne 1;0 < x + 1 \ne 1}\\{y > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{0 < x \ne 1}\\{y > 0}\end{array}} \right.\)</></>

Khi đó hệ

\(\begin{array}{l} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y = {x^2}}\\{y + 23 = {{(x + 1)}^3}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y = {x^2}}\\{{x^2} + 23 = {{(x + 1)}^3}}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y = {x^2}}\\{(x - 2)({x^2} + 4x + 11) = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 2 = {x_0}}\\{y = 4 = {y_0}}\end{array}} \right.\end{array}\)

Do đó \[{x_0} < {y_0}\]

Đáp án cần chọn là: C


Các bài thi hot trong chương:

0

Đánh giá trung bình

0%

0%

0%

0%

0%

Bình luận


Bình luận