Câu hỏi:

27/06/2022 329

Hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{{2^x}{{.9}^y} = 162}\\{{3^x}{{.4}^y} = 48}\end{array}} \right.\)có tất cả bao nhiêu nghiệm (x;y)?

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Nhân vế với vế của hai phương trình ta được:

\[\left( {{2^x}{{.9}^y}} \right).\left( {{3^x}{{.4}^y}} \right) = 162.48 \Leftrightarrow {6^x}{.36^y} = 162.48 \Leftrightarrow {6^x}{.6^{2y}} = {6^5} \Leftrightarrow x + 2y = 5\]

Khi đó

\(\begin{array}{l}\left\{ {\begin{array}{*{20}{c}}{x + 2y = 5}\\{{3^x}{{.4}^y} = 48}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 5 - 2y}\\{{3^{5 - 2y}}{4^y} = 48}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 5 - 2y}\\{\frac{{{3^5}}}{{{9^y}}}{{.4}^y} = {2^4}.3}\end{array}} \right.\\ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 5 - 2y}\\{{{\left( {\frac{2}{3}} \right)}^{2y}} = {{\left( {\frac{2}{3}} \right)}^4}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{y = 2}\\{x = 1}\end{array}} \right.\end{array}\)

Vậy hệ có nghiệm duy nhất (1;2).

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gọi (x;y) là nghiệm của hệ phương trình \(\left\{ {\begin{array}{*{20}{c}}{logx - logy = 2}\\{x - 10y = 900}\end{array}} \right.\), khi đó giá trị biểu thức \[A = x - 2y\;\] là:

Xem đáp án » 27/06/2022 432

Câu 2:

Gọi \[\left( {{x_0};{y_0}} \right)\]là nghiệm của hệ \(\left\{ {\begin{array}{*{20}{c}}{{{\log }_x}y = 2}\\{lo{g_{x + 1}}\left( {y + 23} \right) = 3}\end{array}} \right.\). Mệnh đề nào đúng?

Xem đáp án » 27/06/2022 341

Câu 3:

Điều kiện xác định của hệ phương trình \[\left\{ {\begin{array}{*{20}{c}}{lo{g_2}({x^2} - 1) + lo{g_2}(y - 1) = 1}\\{{3^x} = {3^y}}\end{array}} \right.\] là:

Xem đáp án » 27/06/2022 317

Câu 4:

Gọi m là giá trị thực thỏa mãn hệ \(\left\{ {\begin{array}{*{20}{c}}{{2^{|x|}} - {2^y} = y - |x|\left( {m + 1} \right)}\\{{x^2} + y = {m^2}}\end{array}} \right.\) có nghiệm duy nhất, khi đó giá trị của m thỏa mãn:

Xem đáp án » 27/06/2022 310

Câu 5:

Số nghiệm của hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x + 2y = - 1}\\{{4^{x + {y^2}}} = 16}\end{array}} \right.\)  là:

Xem đáp án » 27/06/2022 306

Câu 6:

Số nghiệm của hệ \(\left\{ {\begin{array}{*{20}{c}}{{2^x} = 2y}\\{{2^y} = 2x}\end{array}} \right.\)là:

Xem đáp án » 27/06/2022 296

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store