Câu hỏi:

28/06/2022 313

Cho hàm số \[f\left( x \right) = \frac{{{3^x}}}{{{7^{{x^2} - 4}}}}\]. Hỏi khẳng định nào sau đây là sai?

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[\begin{array}{*{20}{l}}{f(x) = \frac{{{3^x}}}{{{7^{{x^2} - 4}}}} > 9 \Leftrightarrow {3^x} > {{9.7}^{{x^2} - 4}} \Leftrightarrow {3^x} > {3^2}{{.7}^{{x^2} - 4}} \Leftrightarrow {3^{x - 2}} > {7^{{x^2} - 4}}}\\{ \Leftrightarrow {{\log }_3}{3^{x - 2}} > {{\log }_3}{7^{{x^2} - 4}} \Leftrightarrow x - 2 > ({x^2} - 4){{\log }_3}7}\end{array}\]

Từ đó dựa vào các đáp án ta thấy A đúng.

\[\begin{array}{*{20}{l}}{{3^{x - 2}} > {7^{{x^2} - 4}}}\\{ \Leftrightarrow \ln {3^{x - 2}} > \ln {7^{{x^2} - 4}} \Leftrightarrow (x - 2)\ln 3 > ({x^2} - 4)\ln 7}\end{array}\]=> B đúng

\[\begin{array}{*{20}{l}}{{3^{x - 2}} > {7^{{x^2} - 4}}}\\{ \Leftrightarrow \log {3^{x - 2}} > \log {7^{{x^2} - 4}} \Leftrightarrow (x - 2)\log 3 > ({x^2} - 4)\log 7}\end{array}\]=> C đúng

\[\begin{array}{l}{3^{x - 2}} > 7{x^{2 - 4}}\\ \Leftrightarrow lo{g_{0,2}}{3^{x - 2}} < lo{g_{0,2}}7{x^{2 - 4}} \Leftrightarrow (x - 2)lo{g_{0,2}}3 < ({x^2} - 4)lo{g_{0,2}}7\end{array}\]=> D sai</>

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \[\left( {{3^{{x^2} - x}} - 9} \right)\left( {{2^{{x^2}}} - m} \right) \le 0\]có 5 nghiệm nguyên?

Xem đáp án » 28/06/2022 847

Câu 2:

Tìm số nghiệm nguyên của bất phương trình \[{\left( {\frac{1}{3}} \right)^{\sqrt {{x^2} - 3x - 10} }} > {\left( {\frac{1}{3}} \right)^{x - 2}}\]

Xem đáp án » 28/06/2022 623

Câu 3:

Số nghiệm nguyên của bất phương trình \[{4^x} - {5.2^x} + 4 < 0\]là:

Xem đáp án » 28/06/2022 600

Câu 4:

Bất phương trình \[{\left( {\sqrt 2 } \right)^{{x^2} - 2x}} \le {\left( {\sqrt 2 } \right)^3}\]có tập nghiệm là:

Xem đáp án » 28/06/2022 500

Câu 5:

Tập nghiệm của bất phương trình \[{3^{\sqrt {2x} + 1}} - {3^{x + 1}} \le {x^2} - 2x\] là:

Xem đáp án » 28/06/2022 354

Câu 6:

Cho hàm số \[f\left( x \right) = {5^x}{.9^{{x^3}}}\], chọn phép biến đổi sai khi giải bất phương trình:

Xem đáp án » 28/06/2022 339

Câu 7:

Tìm tập nghiệm S của bất phương trình \[{5^{x + 1}} - \frac{1}{5} > 0\]

Xem đáp án » 28/06/2022 326

Bình luận


Bình luận