Câu hỏi:

28/06/2022 275

Tập hợp nghiệm của bất phương trình: \[{3^{3x - 2}} + \frac{1}{{{{27}^x}}} \le \frac{2}{3}\] là:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

\[{3^{3x - 2}} + \frac{1}{{{{27}^x}}} \le \frac{2}{3} \Leftrightarrow \frac{{{3^{3x}}}}{9} + \frac{1}{{{3^{3x}}}} \le \frac{2}{3}\]

 Đặt\[t = {3^{3x}}\left( {t > 0} \right)\]

Bpt \[ \Leftrightarrow \frac{t}{9} + \frac{1}{t} \le \frac{2}{3} \Leftrightarrow {t^2} - 6t + 9 \le 0 \Leftrightarrow {\left( {t - 3} \right)^2} \le 0 \Leftrightarrow t = 3\]

Khi đó\[{3^{3x}} = 3 \Leftrightarrow 3x = 1 \Leftrightarrow x = \frac{1}{3}\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \[\left( {{3^{{x^2} - x}} - 9} \right)\left( {{2^{{x^2}}} - m} \right) \le 0\]có 5 nghiệm nguyên?

Xem đáp án » 28/06/2022 848

Câu 2:

Tìm số nghiệm nguyên của bất phương trình \[{\left( {\frac{1}{3}} \right)^{\sqrt {{x^2} - 3x - 10} }} > {\left( {\frac{1}{3}} \right)^{x - 2}}\]

Xem đáp án » 28/06/2022 624

Câu 3:

Số nghiệm nguyên của bất phương trình \[{4^x} - {5.2^x} + 4 < 0\]là:

Xem đáp án » 28/06/2022 601

Câu 4:

Bất phương trình \[{\left( {\sqrt 2 } \right)^{{x^2} - 2x}} \le {\left( {\sqrt 2 } \right)^3}\]có tập nghiệm là:

Xem đáp án » 28/06/2022 500

Câu 5:

Tập nghiệm của bất phương trình \[{3^{\sqrt {2x} + 1}} - {3^{x + 1}} \le {x^2} - 2x\] là:

Xem đáp án » 28/06/2022 356

Câu 6:

Cho hàm số \[f\left( x \right) = {5^x}{.9^{{x^3}}}\], chọn phép biến đổi sai khi giải bất phương trình:

Xem đáp án » 28/06/2022 340

Câu 7:

Tìm tập nghiệm S của bất phương trình \[{5^{x + 1}} - \frac{1}{5} > 0\]

Xem đáp án » 28/06/2022 328

Bình luận


Bình luận