Câu hỏi:
28/06/2022 211Tìm số nghiệm nguyên của bất phương trình \[{\left( {\frac{1}{5}} \right)^{{x^2} - 2x}} \ge \frac{1}{{125}}\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có
\[\begin{array}{l}{\left( {\frac{1}{5}} \right)^{{x^2} - 2{\rm{x}}}} \ge \frac{1}{{125}} \Leftrightarrow {\left( {\frac{1}{5}} \right)^{{x^2} - 2{\rm{x}}}} \ge {\left( {\frac{1}{5}} \right)^3}\\ \Leftrightarrow {x^2} - 2{\rm{x}} \le 3 \Leftrightarrow {x^2} - 2{\rm{x}} - 3 \le 0 \Leftrightarrow - 1 \le {\rm{x}} \le 3\end{array}\]
Số nghiệm nguyên là 5.
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \[\left( {{3^{{x^2} - x}} - 9} \right)\left( {{2^{{x^2}}} - m} \right) \le 0\]có 5 nghiệm nguyên?
Câu 2:
Số nghiệm nguyên của bất phương trình \[{4^x} - {5.2^x} + 4 < 0\]là:
Câu 3:
Tìm số nghiệm nguyên của bất phương trình \[{\left( {\frac{1}{3}} \right)^{\sqrt {{x^2} - 3x - 10} }} > {\left( {\frac{1}{3}} \right)^{x - 2}}\]
Câu 4:
Bất phương trình \[{\left( {\sqrt 2 } \right)^{{x^2} - 2x}} \le {\left( {\sqrt 2 } \right)^3}\]có tập nghiệm là:
Câu 5:
Tập nghiệm của bất phương trình \[{3^{\sqrt {2x} + 1}} - {3^{x + 1}} \le {x^2} - 2x\] là:
Câu 6:
Cho hàm số \[f\left( x \right) = {5^x}{.9^{{x^3}}}\], chọn phép biến đổi sai khi giải bất phương trình:
Câu 7:
Tìm tập nghiệm S của bất phương trình \[{5^{x + 1}} - \frac{1}{5} > 0\]
về câu hỏi!