Câu hỏi:

28/06/2022 159

Cho hàm số y=f(x). Hàm số y=f′(x) có bảng biến thiên như sau:

Cho hàm số y=f(x). Hàm số y=f′(x) có bảng biến thiên như sau:Bất phương trình (ảnh 1)

Bất phương trình \[f(x) < {e^x} + m\;\] đúng với mọi \[x \in \left( { - 1;1} \right)\] khi và chỉ khi:

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Theo đề bài ta có : \[f\left( x \right) < {e^x} + m \Leftrightarrow f\left( x \right) - {e^x} < m\]

Đặt\[g\left( x \right) = f\left( x \right) - {e^x}.\]  Khi đó :

\[\begin{array}{l}f(x) < {e^x} + m\forall x \in ( - 1;1)\\ \Rightarrow g(x) = f(x) - {e^x} < m\forall x \in ( - 1;1)\\ \Leftrightarrow m \ge \mathop {max}\limits_{[ - 1;1]} g(x)\\g\prime (x) = f\prime (x) - {e^x}\end{array}\]

 Trên (−1;1) ta có \[f'\left( x \right) < 0;\,\,{e^x} > 0\,\,\forall x \in R \Rightarrow g'\left( x \right) < 0\,\,\forall x \in \left( { - 1;1} \right)\]

⇒g(x) nghịch biến trên (−1;1).

\[\begin{array}{*{20}{l}}{ \Rightarrow \mathop {\max }\limits_{\left[ { - 1;1} \right]} g\left( x \right) = g\left( { - 1} \right) = f\left( { - 1} \right) - {e^{ - 1}} = f\left( { - 1} \right) - \frac{1}{e}}\\{ \Rightarrow m \ge f\left( { - 1} \right) - \frac{1}{e}.}\end{array}\]

Đáp án cần chọn là: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu giá trị nguyên của tham số m để bất phương trình \[\left( {{3^{{x^2} - x}} - 9} \right)\left( {{2^{{x^2}}} - m} \right) \le 0\]có 5 nghiệm nguyên?

Xem đáp án » 28/06/2022 848

Câu 2:

Tìm số nghiệm nguyên của bất phương trình \[{\left( {\frac{1}{3}} \right)^{\sqrt {{x^2} - 3x - 10} }} > {\left( {\frac{1}{3}} \right)^{x - 2}}\]

Xem đáp án » 28/06/2022 624

Câu 3:

Số nghiệm nguyên của bất phương trình \[{4^x} - {5.2^x} + 4 < 0\]là:

Xem đáp án » 28/06/2022 601

Câu 4:

Bất phương trình \[{\left( {\sqrt 2 } \right)^{{x^2} - 2x}} \le {\left( {\sqrt 2 } \right)^3}\]có tập nghiệm là:

Xem đáp án » 28/06/2022 500

Câu 5:

Tập nghiệm của bất phương trình \[{3^{\sqrt {2x} + 1}} - {3^{x + 1}} \le {x^2} - 2x\] là:

Xem đáp án » 28/06/2022 356

Câu 6:

Cho hàm số \[f\left( x \right) = {5^x}{.9^{{x^3}}}\], chọn phép biến đổi sai khi giải bất phương trình:

Xem đáp án » 28/06/2022 340

Câu 7:

Tìm tập nghiệm S của bất phương trình \[{5^{x + 1}} - \frac{1}{5} > 0\]

Xem đáp án » 28/06/2022 328

Bình luận


Bình luận