Câu hỏi:

28/06/2022 207

Cho x;y là hai số thực dương thỏa  mãn \[x \ne y\;\] và \[{\left( {{2^{3y}} + \frac{1}{{{2^{3y}}}}} \right)^y} < {\left( {{2^y} + \frac{1}{{{2^y}}}} \right)^{3y}}\]. Tìm giá trị nhỏ nhất của biểu thức \[P = \frac{{{x^2} + 3{y^2}}}{{xy - {y^2}}}\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có

\[\begin{array}{*{20}{l}}{P = \frac{{{x^2} + 3{y^2}}}{{xy - {y^2}}}}\\{ \Leftrightarrow Pxy - P{y^2} = {x^2} + 3{y^2}}\\{ \Leftrightarrow \left( {P + 3} \right){y^2} - Pxy + {x^2} = 0}\end{array}\]

Phương trình trên có nghiệm khi

\[\begin{array}{l}\Delta = {P^2}{x^2} - 4(P + 3){x^2} \ge 0\\ \Leftrightarrow {P^2} - 4P - 12 \ge 0\\ \Rightarrow \left[ {\begin{array}{*{20}{c}}{P \ge 6}\\{P \le - 2}\end{array}} \right. \Rightarrow MinP = 6\end{array}\]

Dấu bằng xáy ra khi\(\left\{ {\begin{array}{*{20}{c}}{y = \frac{{Px}}{{2(P + 3)}} = \frac{x}{3}}\\{\frac{{{x^2} + 3{y^2}}}{{xy - {y^2}}} = 6}\end{array}} \right. \Rightarrow x = 3y\)

Dễ thấy x=3y thỏa mãn điều kiện bài cho vì:

\[\begin{array}{l}{\left( {{2^{3y}} + \frac{1}{{{2^{3y}}}}} \right)^y} < {\left( {{2^y} + \frac{1}{{{2^y}}}} \right)^{3y}}\\ \Leftrightarrow {2^{3y}} + \frac{1}{{{2^{3y}}}} < {\left( {{2^y} + \frac{1}{{{2^y}}}} \right)^3}\\ \Leftrightarrow {2^{3y}} + \frac{1}{{{2^{3y}}}} < {2^{3y}} + \frac{1}{{{2^{3y}}}} + {3.2^y}.\frac{1}{{{2^y}}}.\left( {{2^y} + \frac{1}{{{2^y}}}} \right)\\ \Leftrightarrow 0 < 3\left( {{2^y} + \frac{1}{{{2^y}}}} \right)\end{array}\]

Bđt trên luôn đúng với mọi y>0.

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\[\left( {{3^{{x^2} - x}} - 9} \right)\left( {{2^{{x^2}}} - m} \right) \le 0\]

TH1: \(\left\{ {\begin{array}{*{20}{c}}{{3^{{x^2} - x}} - 9 \le 0\,\,\,\,\left( 1 \right)}\\{{2^{{x^2}}} - m \ge 0\,\,\,\,\left( 2 \right)}\end{array}} \right.\,\,\,\,\,\left( I \right)\)

\[\left( 1 \right) \Leftrightarrow {3^{{x^2} - x}} \le {3^2} \Leftrightarrow {x^2} - x \le 2 \Leftrightarrow - 1 \le x \le 2\]

⇒ Số nghiệm nguyên của bất phương trình (1) là  4 nghiệm, gồm \[\left\{ { - 1;0;1;2} \right\}\]

Như vậy hệ có tối đa 4 nghiệm nguyên, hay bất phương trình ban đầu cũng chỉ có tối đa 4 nghiệm nguyên (Loại).

TH2: \(\left\{ {\begin{array}{*{20}{c}}{{3^{{x^2} - x}} - 9 \ge 0\,\,\,\,\left( {1'} \right)}\\{{2^{{x^2}}} - m \le 0\,\,\,\,\left( {2'} \right)}\end{array}} \right.\,\,\,\,\,\left( {II} \right)\)

\[(1\prime ) \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \ge 2}\\{x \le - 1}\end{array}} \right.\]

\[\left( {2'} \right) \Leftrightarrow {2^{{x^2}}} \le m \Leftrightarrow {x^2} \le {\log _2}m \Leftrightarrow - \sqrt {{{\log }_2}m} \le x \le \sqrt {{{\log }_2}m} \]

Có bao nhiêu giá trị nguyên của tham số m để bất phương trình (ảnh 1)

Để (II) có nghiệm thì\(\left\{ {\begin{array}{*{20}{c}}{ - \sqrt {lo{g_2}m} \le - 1}\\{\sqrt {lo{g_2}m} \ge 2}\end{array}} \right.\)

Mà bất phương trình ban đầu có 5 nghiệm nguyên nên các nghiệm đó bắt buộc phải là -3, -2, -1, 2, 3.

Do đó

\[3 \le \sqrt {{{\log }_2}m} < 4 \Leftrightarrow 9 \le {\log _2}m < 16 \Leftrightarrow 512 \le m < 65536\]

Vậy có\[65535 - 512 + 1 = 65024\]giá trị nguyên của m thỏa mãn yêu cầu bài toán. 

Đáp án cần chọn là: B

Lời giải

Vì \[0 < \frac{1}{3} < 1\] nên ta có

\[{\left( {\frac{1}{3}} \right)^{\sqrt {{x^2} - 3x - 10} }} > {\left( {\frac{1}{3}} \right)^{x - 2}} \Leftrightarrow \sqrt {{x^2} - 3x - 10} < x - 2\]

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{x^2} - 3x - 10 < {{(x - 2)}^2}}\\{{x^2} - 3x - 10 \ge 0}\\{x - 2 > 0}\end{array}} \right. \Leftrightarrow 5 \le x < 14\)

\[ \Rightarrow x = \{ 5,6,7,8,9,10,11,12,13\} \]

Đáp án cần chọn là: CCâu 12. Tìm tập nghiệm của bất phương trình \[0,{3^{{x^2} + x}} > 0,09\]

A.\[\left( { - \infty ; - 2} \right)\]

B. \[\left( { - \infty ; - 2} \right) \cup \left( {1; + \infty } \right)\]

C. \[\left( { - 2;1} \right)\]

D. \[\left( {1; + \infty } \right)\]Trả lời:

\[0,{3^{{x^2} + x}} > 0,09 \Leftrightarrow 0,{3^{{x^2} + x}} > 0,{3^2} \Leftrightarrow {x^2} + x - 2 < 0 \Leftrightarrow - 2 < x < 1\]

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP