Câu hỏi:
28/06/2022 333Một sinh viên ra trường đi làm ngày 1/1/2020 với mức lương khởi điểm là aa đồng mỗi tháng và cứ sau 2 năm lại được tăng thêm 10% và chi tiêu hàng tháng của anh ta là 40% lương. Anh ta dự định mua một căn hộ chung cư giá rẻ có giá trị tại thời điểm 1/1/2020 là 1 tỷ đồng và cũng sau 2 năm thì giá trị căn hộ tăng thêm 5%. Với aa bằng bao nhiêu thì sau đúng 10 năm anh ta mua được căn hộ đó, biết rằng mức lương và mức tăng giá trị ngôi nhà là không đổi (kết quả quy tròn đến hàng nghìn đồng).
Câu hỏi trong đề: ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Bài toán lãi kép !!
Quảng cáo
Trả lời:
Áp dụng công thức \[P = {P_0}{\left( {1 + r} \right)^n}\]
Giá trị ngôi nhà sau 10 năm là: \[P = {10^9}{\left( {1 + 0,05} \right)^5} = {10^9}.1,{05^5}\]
đồng.
Sau khi chi tiêu mỗi thàng thì số tiền người sinh viên còn lại là 60% lương.
Trong 2 năm 2020 – 2021: số tiền có được là: 0,6a.24 (đồng).
Trong 2 năm 2022 – 2023: số tiền có được là: 0,6a(1 + 0,1).24 (đồng)
Trong 2 năm 2024 – 2025: số tiền có được là:\[0,6a{\left( {1 + 0,1} \right)^2}.24\] (đồng)
Trong 2 năm 2026 – 2027: số tiền có được là:\[0,6a{\left( {1 + 0,1} \right)^3}.24\] (đồng)
Trong 2 năm 2028 – 2029: số tiền có được là: \[0,6a{\left( {1 + 0,1} \right)^4}.24\](đồng)
⇒ Tổng số tiền người sinh viên có trong 10 năm là:
\[0,6a.24 + 0,6a(1 + 0,1).24 + 0,6a{(1 + 0,1)^2}.24 + 0,6a{(1 + 0,1)^3}.24 + 0,6a{(1 + 0,1)^4}.24\]
\[ = 0,6a.24[1 + (1 + 0,1) + {(1 + 0,1)^2} + {(1 + 0,1)^3} + {(1 + 0,1)^4}]\]
\[ = 14,4a(1 + 1,1 + 1,{1^2} + 1,{1^3} + 1,{1^4})\]
\[ = 14,4a.\frac{{1.(1 - 1,{1^5})}}{{1 - 1,1}} = 87,91344a\]
Để sau đúng 10 năm anh ta mua được căn hộ đó thì:
\[87,91344a = {10^9}.{\left( {1,05} \right)^5} \Leftrightarrow a = 14.517.000\] (đồng)
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có:
\[\begin{array}{*{20}{l}}{A = 1.000.000}\\{r = 0,65{\rm{\% }}}\\{N = 2.12 = 24}\end{array}\]
Vậy \[T = A{\left( {1 + r} \right)^N} = 1.000.000{\left( {1 + 0,65:100} \right)^{24}} = 1.168.236\]
Đáp án cần chọn là: B
Lời giải
Ta có:
\[\begin{array}{*{20}{l}}{A = 2.000.000}\\{r = 0,48{\rm{\% }}}\\{m = 3}\\{N = \frac{{3.12}}{3} = 12}\end{array}\]
Vậy \[T = A{\left( {1 + mr} \right)^N} = 2.000.000{\left( {1 + 3.0,48{\rm{\% }}} \right)^{12}} = 2.374.329\](đồng).
Đáp án cần chọn là: A
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận