Câu hỏi:
28/06/2022 249Biết \[F\left( x \right) = \left( {ax + b} \right).{e^x}\] là nguyên hàm của hàm số \[y = (2x + 3).{e^x}\]. Khi đó b−a là
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = 2x + 3}\\{dv = {e^x}dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = 2dx}\\{v = {e^x}}\end{array}} \right.\)
\[ \Rightarrow \smallint (2x + 3){e^x}dx = (2x + 3){e^x} - \smallint {e^x}2dx = (2x + 3){e^x} - 2{e^x} = (2x + 1){e^x}\]
Khi đó\[a = 2,b = 1\]
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Cho \[F\left( x \right) = \smallint \left( {x + 1} \right)f'\left( x \right)dx\]. Tính \[I = \smallint f(x)dx\;\] theo F(x).
Câu 4:
Cho hàm số f(x) có đạo hàm liên tục trên \(\mathbb{R}\) và \[f\left( 0 \right) = 1,\;F(x) = f(x) - {e^x} - x\;\] là một nguyên hàm của f(x). Họ các nguyên hàm của f(x) là:
Câu 5:
Trong phương pháp nguyên hàm từng phần, nếu \(\left\{ {\begin{array}{*{20}{c}}{u = g\left( x \right)}\\{dv = h\left( x \right)dx}\end{array}} \right.\) thì:
Câu 6:
Tìm nguyên hàm của hàm số \[f\left( x \right) = {x^2}ln\left( {3x} \right)\]
về câu hỏi!