Câu hỏi:

28/06/2022 405 Lưu

Biết \[F\left( x \right) = \left( {ax + b} \right).{e^x}\] là nguyên hàm của hàm số \[y = (2x + 3).{e^x}\]. Khi đó b−a là

A.−1  

B.3

C.11

D.2

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = 2x + 3}\\{dv = {e^x}dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = 2dx}\\{v = {e^x}}\end{array}} \right.\)

\[ \Rightarrow \smallint (2x + 3){e^x}dx = (2x + 3){e^x} - \smallint {e^x}2dx = (2x + 3){e^x} - 2{e^x} = (2x + 1){e^x}\]

Khi đó\[a = 2,b = 1\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A.\[\frac{1}{2}\left( {\frac{1}{4}\sin 2x - \frac{x}{2}\cos 2x} \right) + C\]

B. \[ - \frac{1}{2}\left( {\frac{1}{2}\sin 2x - \frac{x}{4}\cos 2x} \right) + C\]

C. \[\frac{1}{2}\left( {\frac{1}{2}\sin 2x + \frac{x}{2}\cos 2x} \right) + C\]

D. \[ - \frac{1}{2}\left( {\frac{1}{2}\sin 2x + \frac{x}{4}\cos 2x} \right) + C\]

Lời giải

\[I = \smallint x\sin x\cos xdx = \frac{1}{2}\smallint x\sin 2xdx\]

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = sin2xdx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = - \frac{{cos2x}}{2}}\end{array}} \right.\)

\[ \Rightarrow I = \frac{1}{2}\left( { - x.\frac{{\cos 2x}}{2} + \frac{1}{2}\smallint \cos 2xdx} \right) + C\]

\[ = \frac{1}{2}\left( { - \frac{{x\cos 2x}}{2} + \frac{{\sin 2x}}{4}} \right) + C\]

Đáp án cần chọn là: A

Câu 2

A.\[2\left( {\sqrt x \sin \sqrt x - \cos \sqrt x } \right) + C\]

B. \[2\left( {\sqrt x \sin \sqrt x + \cos \sqrt x } \right) + C\]

C. \[\sqrt x \sin \sqrt x + \cos \sqrt x + C\]

D. \[\sqrt x \sin \sqrt x - \cos \sqrt x + C\]

Lời giải

Đặt \[\sqrt x = t \Rightarrow x = {t^2} \Rightarrow dx = 2tdt \Rightarrow I = 2\smallint t\cos tdt.\]

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = t}\\{dv = costdt}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dt}\\{v = sint}\end{array}} \right.\)

\[ \Rightarrow I = 2\left( {t\sin t - \smallint sintdt + C} \right) = 2\left( {t\sin t + \cos t + C} \right)\]

\[ = 2\left( {\sqrt x \sin \sqrt x + \cos \sqrt x } \right) + C.\]

Đáp án cần chọn là: B

Câu 3

A.\[I = \left( {x + 1} \right)f\left( x \right) - 2F\left( x \right) + C\]

B. \[I = F\left( x \right) - \left( {x + 1} \right)f\left( x \right)\]

C. \[I = \left( {x + 1} \right)f\left( x \right) + C\]

D. \[I = \left( {x + 1} \right)f\left( x \right) - F\left( x \right) + C\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A.\[\smallint f(x)dx = {x^3}\ln 3x - \frac{{{x^3}}}{3} + C\]

B. \[\smallint f(x)dx = \frac{{{x^3}\ln 3x}}{3} - \frac{{{x^3}}}{9} + C\]

C. \[\smallint f(x)dx = \frac{{{x^3}\ln 3x}}{3} - \frac{{{x^3}}}{3} + C\]

D. \[\smallint f(x)dx = \frac{{{x^3}\ln 3x}}{3} - \frac{{{x^3}}}{{27}} + C\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A.\[\left( {x + 1} \right){e^x} + C\]

B. \[\left( {x + 1} \right){e^x} - x + C\]

C. \[\left( {x + 2} \right){e^x} - x + C\]

D. \[\left( {x + 1} \right){e^x} + x + C\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.\(\left\{ {\begin{array}{*{20}{c}}{du = g'\left( x \right)dx}\\{v = \smallint h(x)dx}\end{array}} \right.\)

B. \(\left\{ {\begin{array}{*{20}{c}}{du = g\left( x \right)dx}\\{v = \smallint h(x)dx}\end{array}} \right.\)

C. \(\left\{ {\begin{array}{*{20}{c}}{du = \smallint g\left( x \right)dx}\\{v = h(x)dx}\end{array}} \right.\)

D. \(\left\{ {\begin{array}{*{20}{c}}{du = g'\left( x \right)dx}\\{v = h(x)dx}\end{array}} \right.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP