ĐGNL ĐHQG Hà Nội - Tư duy định lượng - Sử dụng phương pháp nguyên hàm từng phần để tìm nguyên hàm

28 người thi tuần này 4.6 795 lượt thi 20 câu hỏi 30 phút

🔥 Đề thi HOT:

2289 người thi tuần này

Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)

8.2 K lượt thi 235 câu hỏi
1394 người thi tuần này

Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)

15.3 K lượt thi 150 câu hỏi
885 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)

12.3 K lượt thi 235 câu hỏi
467 người thi tuần này

Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)

1.8 K lượt thi 235 câu hỏi
461 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)

1.8 K lượt thi 150 câu hỏi
414 người thi tuần này

ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai

14.5 K lượt thi 50 câu hỏi
380 người thi tuần này

Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 8)

1.2 K lượt thi 236 câu hỏi
372 người thi tuần này

Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)

2.1 K lượt thi 150 câu hỏi

Nội dung liên quan:

Danh sách câu hỏi:

Câu 1

Chọn công thức đúng:

Lời giải

Công thức đúng là \[\smallint udv = uv - \smallint vdu\]

Đáp án cần chọn là: B

Câu 2

Trong phương pháp nguyên hàm từng phần, nếu \(\left\{ {\begin{array}{*{20}{c}}{u = g\left( x \right)}\\{dv = h\left( x \right)dx}\end{array}} \right.\) thì:

Lời giải

Ta có: \[u = g\left( x \right) \Rightarrow du = g'\left( x \right)dx\]

\[dv = h\left( x \right)dx \Rightarrow v = \smallint h\left( x \right)dx\]

Đáp án cần chọn là: A

Câu 3

Cho \[F\left( x \right) = \smallint \left( {x + 1} \right)f'\left( x \right)dx\]. Tính \[I = \smallint f(x)dx\;\] theo F(x).

Lời giải

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x + 1}\\{dv = f\prime (x)dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = f(x)}\end{array}} \right.\)

\[ \Rightarrow F\left( x \right) = \left( {x + 1} \right)f\left( x \right) - \smallint f\left( x \right)dx + C\]

\[ \Rightarrow I = \smallint f\left( x \right)dx = \left( {x + 1} \right)f\left( x \right) - F\left( x \right) + C.\]

Đáp án cần chọn là: D

Câu 4

Tìm nguyên hàm của hàm số \[f\left( x \right) = {x^2}ln\left( {3x} \right)\]

Lời giải

Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = ln3x}\\{dv = {x^2}dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = \frac{3}{{3x}}dx}\\{v = \frac{1}{3}{x^3}}\end{array}} \right.\)

\[ \Rightarrow I = \frac{1}{3}{x^3}\ln 3x - \smallint \frac{1}{3}{x^3}.\frac{3}{{3x}}dx = \frac{1}{3}{x^3}\ln 3x - \smallint \frac{1}{3}{x^2}dx = \frac{1}{3}{x^3}\ln 3x - \frac{1}{9}{x^3} + C\]

Đáp án cần chọn là: B

Lời giải

Đặt \(\left\{ {\begin{array}{*{20}{c}}{u = 2x + 3}\\{dv = {e^x}dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = 2dx}\\{v = {e^x}}\end{array}} \right.\)

\[ \Rightarrow \smallint (2x + 3){e^x}dx = (2x + 3){e^x} - \smallint {e^x}2dx = (2x + 3){e^x} - 2{e^x} = (2x + 1){e^x}\]

Khi đó\[a = 2,b = 1\]

Đáp án cần chọn là: A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Tìm nguyên hàm F(x) của \[f\left( x \right) = \frac{{{2^x} - 1}}{{{e^x}}}.\] biết F(0)=1.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 8

\[\smallint x\sin x\cos xdx\]bằng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 9

Tính \[I = \smallint \cos \sqrt x dx\] ta được:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 10

Gọi F(x) là một nguyên hàm của hàm số \[y = x.cosx\] mà F(0)=1. Phát biểu nào sau đây đúng:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 11

Cho F(x) là một nguyên hàm của hàm số \[f\left( x \right) = \frac{x}{{{{\cos }^2}x}}\] thỏa mãn F(0)=0. Tính \[F(\pi )?\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 12

Tính \[I = \smallint x{\tan ^2}xdx\] ta được:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 13

Nguyên hàm của hàm số \[f(x) = \cos 2x\ln \left( {\sin x + \cos x} \right)dx\]  là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 14

Tính \[I = \smallint \ln \left( {x + \sqrt {{x^2} + 1} } \right)dx\] ta được:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 15

Tính \[I = \smallint {e^{2x}}\cos 3xdx\] ta được:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 16

Nguyên hàm của hàm số \[y = \frac{{\left( {{x^2} + x} \right){e^x}}}{{x + {e^{ - x}}}}dx\] là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 17

Tính \[\smallint \frac{{{x^2} - 1}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx\]?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 19

Cho hàm số f(x) có đạo hàm liên tục trên \(\mathbb{R}\) và \[f\left( 0 \right) = 1,\;F(x) = f(x) - {e^x} - x\;\] là một nguyên hàm của f(x). Họ các nguyên hàm của f(x) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

4.6

159 Đánh giá

50%

40%

0%

0%

0%