Câu hỏi:
28/06/2022 189Quảng cáo
Trả lời:
Ta có:\[\frac{{{x^2} - 1}}{{{{\left( {{x^2} + 1} \right)}^2}}} = \frac{{2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}} - \frac{1}{{{x^2} + 1}}\]
\[ \Rightarrow \smallint \frac{{{x^2} - 1}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx = \smallint \frac{{2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx - \smallint \frac{1}{{{x^2} + 1}}dx\,\,\left( 1 \right)\]
Ta tính\[\smallint \frac{{2{x^2}}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx = \smallint \frac{{xd\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}}\] bằng phương pháp tích phân từng phân như sau:
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = \frac{{d({x^2} + 1)}}{{{{({x^2} + 1)}^2}}}}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = - \frac{1}{{{x^2} + 1}}}\end{array}} \right.\)
\[ \Rightarrow \smallint \frac{{xd\left( {{x^2} + 1} \right)}}{{{{\left( {{x^2} + 1} \right)}^2}}} = - \frac{x}{{{x^2} + 1}} + \smallint \frac{{dx}}{{{x^2} + 1}} + C\,\,\left( 2 \right)\]
Từ (1) và (2) suy ra
\[\smallint \frac{{{x^2} - 1}}{{{{\left( {{x^2} + 1} \right)}^2}}}dx = - \frac{x}{{{x^2} + 1}} + \smallint \frac{{dx}}{{{x^2} + 1}} + C - \smallint \frac{1}{{{x^2} + 1}}dx = - \frac{x}{{{x^2} + 1}} + C.\]
Đáp án cần chọn là: C
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\[I = \smallint x\sin x\cos xdx = \frac{1}{2}\smallint x\sin 2xdx\]
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = sin2xdx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = - \frac{{cos2x}}{2}}\end{array}} \right.\)
\[ \Rightarrow I = \frac{1}{2}\left( { - x.\frac{{\cos 2x}}{2} + \frac{1}{2}\smallint \cos 2xdx} \right) + C\]
\[ = \frac{1}{2}\left( { - \frac{{x\cos 2x}}{2} + \frac{{\sin 2x}}{4}} \right) + C\]
Đáp án cần chọn là: A
Lời giải
Đặt \[\sqrt x = t \Rightarrow x = {t^2} \Rightarrow dx = 2tdt \Rightarrow I = 2\smallint t\cos tdt.\]
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = t}\\{dv = costdt}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dt}\\{v = sint}\end{array}} \right.\)
\[ \Rightarrow I = 2\left( {t\sin t - \smallint sintdt + C} \right) = 2\left( {t\sin t + \cos t + C} \right)\]
\[ = 2\left( {\sqrt x \sin \sqrt x + \cos \sqrt x } \right) + C.\]
Đáp án cần chọn là: B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.