Câu hỏi:
28/06/2022 244Tìm nguyên hàm F(x) của \[f\left( x \right) = \frac{{{2^x} - 1}}{{{e^x}}}.\] biết F(0)=1.
Quảng cáo
Trả lời:
\[F\left( x \right) = \smallint \frac{{{2^x} - 1}}{{{e^x}}}dx = \smallint \left( {{2^x} - 1} \right){e^{ - x}}dx = \smallint {2^x}{e^{ - x}}dx - \smallint {e^{ - x}}dx\]
\[ = \smallint {2^x}{e^{ - x}}dx + {e^{ - x}} + {C_1} = I + {e^{ - x}} + {C_1}.\]
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = {2^x}}\\{dv = {e^{ - x}}dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = {2^x}ln2dx}\\{v = - {e^{ - x}}}\end{array}} \right.\)
\[\begin{array}{l} \Rightarrow I = - {2^x}{e^{ - x}} + ln2\smallint {2^x}{e^{ - x}}dx + {C_2} = - {2^x}{e^{ - x}} + ln2.I + {C_2}\\ \Leftrightarrow (ln2 - 1)I + {C_2} = {2^x}{e^{ - x}} \Rightarrow I = \frac{{{2^x}{e^{ - x}}}}{{ln2 - 1}} + {C_2}.\end{array}\]
\[ \Rightarrow F(x) = \frac{{{2^x}{e^{ - x}}}}{{ln2 - 1}} + {e^{ - x}} + C = \frac{{{2^x}}}{{(ln2 - 1){e^x}}} + \frac{1}{{{e^x}}} + C\]
\[ \Rightarrow F(0) = \frac{1}{{ln2 - 1}} + 1 + C = 1 \Rightarrow C = - \frac{1}{{ln2 - 1}}\]
\[ \Rightarrow F(x) = \frac{{{2^x}}}{{(ln2 - 1){e^x}}} + \frac{1}{{{e^x}}} - \frac{1}{{ln2 - 1}}\]
\[ = \frac{1}{{ln2 - 1}}{\left( {\frac{2}{e}} \right)^x} + {\left( {\frac{1}{e}} \right)^x} - \frac{1}{{ln2 - 1}}\]
Đáp án cần chọn là: B
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\[I = \smallint x\sin x\cos xdx = \frac{1}{2}\smallint x\sin 2xdx\]
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = sin2xdx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = - \frac{{cos2x}}{2}}\end{array}} \right.\)
\[ \Rightarrow I = \frac{1}{2}\left( { - x.\frac{{\cos 2x}}{2} + \frac{1}{2}\smallint \cos 2xdx} \right) + C\]
\[ = \frac{1}{2}\left( { - \frac{{x\cos 2x}}{2} + \frac{{\sin 2x}}{4}} \right) + C\]
Đáp án cần chọn là: A
Lời giải
Đặt \[\sqrt x = t \Rightarrow x = {t^2} \Rightarrow dx = 2tdt \Rightarrow I = 2\smallint t\cos tdt.\]
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = t}\\{dv = costdt}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dt}\\{v = sint}\end{array}} \right.\)
\[ \Rightarrow I = 2\left( {t\sin t - \smallint sintdt + C} \right) = 2\left( {t\sin t + \cos t + C} \right)\]
\[ = 2\left( {\sqrt x \sin \sqrt x + \cos \sqrt x } \right) + C.\]
Đáp án cần chọn là: B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.