Biết rằng \[x{e^x}\] là một nguyên hàm của hàm số f(−x) trên khoảng \[\left( { - \infty ; + \infty } \right)\]. Gọi F(x) là một nguyên hàm của \[f\prime \left( x \right){e^x}\;\] thỏa mãn F(0)=1, giá trị của F(−1) bằng:
A.\[\frac{7}{2}\]
B. \[\frac{{5 - e}}{2}\]
C. \[\frac{{7 - e}}{2}\]
D. \[\frac{5}{2}\]
Quảng cáo
Trả lời:

Vì \[x{e^x}\] là một nguyên hàm của hàm số f(−x) nên
\[{\left( {x{e^x}} \right)^\prime } = f\left( { - x} \right) \Leftrightarrow f\left( { - x} \right) = {e^x} + x{e^x} = {e^x}\left( {1 + x} \right)\]
\[ \Rightarrow f\left( x \right) = {e^{ - x}}\left( {1 - x} \right)\]
\[\begin{array}{l} \Rightarrow f\prime (x) = - {e^{ - x}}(1 - x) - {e^{ - x}} = - e - x(2 - x) = (x - 2){e^{ - x}}\\ \Rightarrow f\prime (x){e^x} = (x - 2){e^{ - x}}.{e^x} = x - 2\\ \Rightarrow F(x) = \smallint f(x)dx = \smallint (x - 2)dx = \frac{{{x^2}}}{2} - 2x + C\\F(0) = 1 \Rightarrow C = 1 \Rightarrow F(x) = \frac{{{x^2}}}{2} - 2x + 1\\ \Rightarrow F( - 1) = \frac{{{{( - 1)}^2}}}{2} - 2( - 1) + 1 = \frac{7}{2}\end{array}\]
Đáp án cần chọn là: A
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A.\[\frac{1}{2}\left( {\frac{1}{4}\sin 2x - \frac{x}{2}\cos 2x} \right) + C\]
B. \[ - \frac{1}{2}\left( {\frac{1}{2}\sin 2x - \frac{x}{4}\cos 2x} \right) + C\]
C. \[\frac{1}{2}\left( {\frac{1}{2}\sin 2x + \frac{x}{2}\cos 2x} \right) + C\]
D. \[ - \frac{1}{2}\left( {\frac{1}{2}\sin 2x + \frac{x}{4}\cos 2x} \right) + C\]
Lời giải
\[I = \smallint x\sin x\cos xdx = \frac{1}{2}\smallint x\sin 2xdx\]
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = sin2xdx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = - \frac{{cos2x}}{2}}\end{array}} \right.\)
\[ \Rightarrow I = \frac{1}{2}\left( { - x.\frac{{\cos 2x}}{2} + \frac{1}{2}\smallint \cos 2xdx} \right) + C\]
\[ = \frac{1}{2}\left( { - \frac{{x\cos 2x}}{2} + \frac{{\sin 2x}}{4}} \right) + C\]
Đáp án cần chọn là: A
Câu 2
A.\[2\left( {\sqrt x \sin \sqrt x - \cos \sqrt x } \right) + C\]
B. \[2\left( {\sqrt x \sin \sqrt x + \cos \sqrt x } \right) + C\]
C. \[\sqrt x \sin \sqrt x + \cos \sqrt x + C\]
D. \[\sqrt x \sin \sqrt x - \cos \sqrt x + C\]
Lời giải
Đặt \[\sqrt x = t \Rightarrow x = {t^2} \Rightarrow dx = 2tdt \Rightarrow I = 2\smallint t\cos tdt.\]
Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = t}\\{dv = costdt}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dt}\\{v = sint}\end{array}} \right.\)
\[ \Rightarrow I = 2\left( {t\sin t - \smallint sintdt + C} \right) = 2\left( {t\sin t + \cos t + C} \right)\]
\[ = 2\left( {\sqrt x \sin \sqrt x + \cos \sqrt x } \right) + C.\]
Đáp án cần chọn là: B
Câu 3
A.\[I = \left( {x + 1} \right)f\left( x \right) - 2F\left( x \right) + C\]
B. \[I = F\left( x \right) - \left( {x + 1} \right)f\left( x \right)\]
C. \[I = \left( {x + 1} \right)f\left( x \right) + C\]
D. \[I = \left( {x + 1} \right)f\left( x \right) - F\left( x \right) + C\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A.\[\smallint f(x)dx = {x^3}\ln 3x - \frac{{{x^3}}}{3} + C\]
B. \[\smallint f(x)dx = \frac{{{x^3}\ln 3x}}{3} - \frac{{{x^3}}}{9} + C\]
C. \[\smallint f(x)dx = \frac{{{x^3}\ln 3x}}{3} - \frac{{{x^3}}}{3} + C\]
D. \[\smallint f(x)dx = \frac{{{x^3}\ln 3x}}{3} - \frac{{{x^3}}}{{27}} + C\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A.\[\left( {x + 1} \right){e^x} + C\]
B. \[\left( {x + 1} \right){e^x} - x + C\]
C. \[\left( {x + 2} \right){e^x} - x + C\]
D. \[\left( {x + 1} \right){e^x} + x + C\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A.\(\left\{ {\begin{array}{*{20}{c}}{du = g'\left( x \right)dx}\\{v = \smallint h(x)dx}\end{array}} \right.\)
B. \(\left\{ {\begin{array}{*{20}{c}}{du = g\left( x \right)dx}\\{v = \smallint h(x)dx}\end{array}} \right.\)
C. \(\left\{ {\begin{array}{*{20}{c}}{du = \smallint g\left( x \right)dx}\\{v = h(x)dx}\end{array}} \right.\)
D. \(\left\{ {\begin{array}{*{20}{c}}{du = g'\left( x \right)dx}\\{v = h(x)dx}\end{array}} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.