Câu hỏi:

28/06/2022 179

Cho hàm số f(x) có đạo hàm liên tục trên \(\mathbb{R}\) và \[f\left( 1 \right) = 0,\;F(x) = {[f(x)]^{2020}}\] là một nguyên hàm của \[2020x.{e^x}\]. Họ các nguyên hàm của \[{f^{2020}}(x)\;\] là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì\[F\left( x \right) = {\left[ {f\left( x \right)} \right]^{2020}}\]  là một nguyên hàm của\[2020x.{e^x}\] nên

\[\begin{array}{*{20}{l}}{F'\left( x \right) = 2020x.{e^x}}\\{ \Leftrightarrow 2020{f^{2019}}\left( x \right).f'\left( x \right) = 2020x.{e^x}}\\{ \Leftrightarrow {f^{2019}}\left( x \right).f'\left( x \right) = x.{e^x}}\end{array}\]

Lấy nguyên hàm hai vế ta được:

\[\begin{array}{*{20}{l}}{\smallint {f^{2019}}\left( x \right).f'\left( x \right)dx = \smallint x.{e^x}dx}\\{ \Leftrightarrow \smallint {f^{2019}}\left( x \right)d\left[ {f\left( x \right)} \right] = x.{e^x} - \smallint {e^x}dx}\\{ \Leftrightarrow \frac{{{f^{2020}}\left( x \right)}}{{2020}} = x.{e^x} - {e^x} + C}\\{ \Leftrightarrow {f^{2020}}\left( x \right) = 2020\left( {x - 1} \right){e^x} + 2020C}\end{array}\]

Có \[f\left( 1 \right) = 1 \Leftrightarrow 0 = 2020C \Leftrightarrow C = 0\] do đó\[{f^{2020}}\left( x \right) = 2020\left( {x - 1} \right){e^x}\]

\[ \Rightarrow I = \smallint {f^{2020}}\left( x \right)dx = \smallint 2020\left( {x - 1} \right){e^x}dx\]

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x - 1}\\{dv = {e^x}dx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = {e^x}}\end{array}} \right.\)

Khi đó

\[\begin{array}{*{20}{l}}{\,\,\,\,\,\,I = 2020\left[ {\left( {x - 1} \right){e^x} - \smallint {e^x}dx + C} \right]}\\{ \Leftrightarrow I = 2020\left[ {\left( {x - 1} \right){e^x} - {e^x} + C} \right]}\\{ \Leftrightarrow I = 2020\left[ {\left( {x - 2} \right){e^x} + C} \right]}\\{ \Leftrightarrow I = 2020\left( {x - 2} \right){e^x} + C}\end{array}\]

Đáp án cần chọn là: A

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

\[\smallint x\sin x\cos xdx\]bằng:

Xem đáp án » 28/06/2022 8,739

Câu 2:

Tính \[I = \smallint \cos \sqrt x dx\] ta được:

Xem đáp án » 28/06/2022 945

Câu 3:

Cho \[F\left( x \right) = \smallint \left( {x + 1} \right)f'\left( x \right)dx\]. Tính \[I = \smallint f(x)dx\;\] theo F(x).

Xem đáp án » 28/06/2022 500

Câu 4:

Tìm nguyên hàm của hàm số \[f\left( x \right) = {x^2}ln\left( {3x} \right)\]

Xem đáp án » 28/06/2022 370

Câu 5:

Trong phương pháp nguyên hàm từng phần, nếu \(\left\{ {\begin{array}{*{20}{c}}{u = g\left( x \right)}\\{dv = h\left( x \right)dx}\end{array}} \right.\) thì:

Xem đáp án » 28/06/2022 354

Câu 6:

Cho hàm số f(x) có đạo hàm liên tục trên \(\mathbb{R}\) và \[f\left( 0 \right) = 1,\;F(x) = f(x) - {e^x} - x\;\] là một nguyên hàm của f(x). Họ các nguyên hàm của f(x) là:

Xem đáp án » 28/06/2022 349

Câu 7:

Chọn công thức đúng:

Xem đáp án » 28/06/2022 345
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay