Câu hỏi:
28/06/2022 1,104Nếu \[\mathop \smallint \limits_0^1 \left[ {{f^2}\left( x \right) - f\left( x \right)} \right]dx = 5\]và \[\mathop \smallint \limits_0^1 {\left[ {f\left( x \right) + 1} \right]^2}dx = 36\]thì \(\int\limits_0^1 {f\left( x \right)dx} \) bằng:
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
Ta có:\[\mathop \smallint \limits_0^1 \left[ {{f^2}\left( x \right) - f\left( x \right)} \right]dx = 5\]
\[\begin{array}{l}\mathop \smallint \limits_0^1 {\left[ {f\left( x \right) + 1} \right]^2}dx = 36 \Leftrightarrow \mathop \smallint \limits_0^1 [{f^2}(x) + 2f(x) + 1]dx = 36\\ \Rightarrow \mathop \smallint \limits_0^1 [{f^2}(x) + 2f(x) + 1]dx - \mathop \smallint \limits_0^1 [{f^2}(x) - f(x)]dx = 36 - 5\\ \Leftrightarrow \mathop \smallint \limits_0^1 [3f(x) + 1]dx = 31 \Leftrightarrow 3\mathop \smallint \limits_0^1 f(x)dx + \mathop \smallint \limits_0^1 dx = 31\\ \Leftrightarrow 3\mathop \smallint \limits_0^1 f(x)dx + x\left| {_0^1} \right. = 31 \Leftrightarrow 3\mathop \smallint \limits_0^1 f(x)dx + 1 = 31\\ \Leftrightarrow 3\mathop \smallint \limits_0^1 f(x)dx = 30 \Leftrightarrow \mathop \smallint \limits_0^1 f(x)dx = 10.\end{array}\]
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tích phân \[I = \mathop \smallint \limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} \frac{{dx}}{{\sin x}}\] có giá trị bằng
Câu 2:
Cho hai tích phân \[I = \mathop \smallint \limits_0^2 {x^3}dx,J = \int\limits_0^2 {xdx} \]. Tìm mối quan hệ giữa I và J
Câu 3:
Nếu \[\mathop \smallint \limits_1^2 \frac{{dx}}{{x + 3}}\]được viết dưới dạng \[ln\frac{a}{b}\;\] với a,b là các số tự nhiên và ước chung lớn nhất của a,b là 1. Chọn khẳng định sai:
Câu 4:
Đặt \[F\left( x \right) = \mathop \smallint \limits_1^x tdt\]. Khi đó F′(x) là hàm số nào dưới đây?
Câu 5:
Tích phân \[I = \mathop \smallint \limits_0^1 \frac{1}{{{x^2} - x - 2}}dx\] có giá trị bằng
Câu 6:
Nếu \[f\left( 1 \right) = 12,f\prime (x)\;\] liên tục và \[\int\limits_1^4 {f\prime (x)dx = 17} \]thì giá trị của f(4) bằng:
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Top 10 đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2023 - 2024 có đáp án (Đề 7)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 2)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
ĐGNL ĐHQG Hà Nội - Khoa học tự nhiên - Định luật khúc xạ ánh sáng
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 4)
về câu hỏi!