Câu hỏi:
28/06/2022 1,929Cho hai hàm số \[f\left( x \right) = m{x^3} + n{x^2} + px - \frac{5}{2}\left( {m,n,p \in \mathbb{R}} \right)\]và\(g\left( x \right) = {x^2} + 3x - 1\) có đồ thị cắt nhau tại ba điểm có hoành độ lần lượt là −3;−1;1( tham khảo hình vẽ bên). Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số f(x)và g(x) bằng
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đồ thị hàm số\[f\left( x \right) = m{x^3} + n{x^2} + px - \frac{5}{2}\]đi qua các điểm có tọa độ\[\left( {1;2} \right);\left( { - 1; - 2} \right);\left( { - 3;2} \right)\]nên ta có hệ phương trình:
\(\left\{ {\begin{array}{*{20}{c}}{m + n + p - \frac{5}{2} = 2}\\{ - m + n - p - \frac{5}{2} = - 2}\\{ - 27m + 9n - 3p - \frac{5}{2} = 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{m = \frac{1}{2}}\\{n = \frac{5}{2}}\\{p = \frac{3}{2}}\end{array}} \right.\)
\[ \Rightarrow f\left( x \right) = \frac{1}{2}{x^3} + \frac{5}{2}{x^2} + \frac{3}{2}x - \frac{5}{2}.\]
Xét phương trình haonfh độ giao điểm\[f\left( x \right) = g\left( x \right) \Leftrightarrow f\left( x \right) - g\left( x \right) = 0\]
Dựa vào đồ thị ta thấy phương trình\[f\left( x \right) - g\left( x \right) = 0\]có 3 nghiệm là\(\left[ {\begin{array}{*{20}{c}}{{x_1} = - 3}\\{{x_2} = - 1}\\{{x_3} = 1}\end{array}} \right.\)
Do đó diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\[f\left( x \right);g\left( x \right)\]bằng
\[S = \int\limits_{ - 3}^{ - 1} {[f(x) - g(x)]dx + \int\limits_{ - 1}^1 {[g(x) - f(x)]dx} } \]
\( = \int\limits_{ - 3}^{ - 1} {\left( {\frac{1}{2}{x^3} + \frac{5}{2}{x^2} + \frac{3}{2}x - \frac{5}{2} - {x^2} - 2x + 1} \right)dx + \int\limits_{ - 1}^1 {\left( {{x^2} + 2x - 1 - \frac{1}{2}{x^3} - \frac{5}{2}{x^2} - \frac{3}{2}x + \frac{5}{2}} \right)} } dx\)
\( = \int\limits_{ - 3}^{ - 1} {\left( {\frac{1}{2}{x^3} + \frac{3}{2}{x^2} - \frac{1}{2}x - \frac{3}{2}} \right)} dx + \int\limits_{ - 1}^1 {\left( { - \frac{1}{2}{x^3} - \frac{3}{2}{x^2} + \frac{1}{2}x + \frac{3}{2}} \right)} dx\)
\( = 2 + 2 = 4\)
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính diện tích hình phẳng giới hạn bởi hai đường: \[y = \left| {{x^2} - 4x + 3} \right|\,\,\,;\,\,y = x + 3\]
Câu 2:
Cho đồ thị hàm số y=f(x) như hình vẽ dưới đây. Diện tích S của hình phẳng (phần gạch chéo) được xác định bởi
Câu 3:
Công thức tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \[y = f\left( x \right),y = g\left( x \right)\] và hai đường thẳng \[x = a,x = b(a < b)\;\] là:
Câu 4:
Tính diện tích S của hình phẳng giới hạn bởi đồ thị của hai hàm số \[y = {x^2} - 4\;\] và \[y = x - 4\]
Câu 5:
Diện tích hình phẳng giới hạn bởi nửa đường tròn \[{x^2} + {y^2} = 2,y > 0\] và parabol \[y = {x^2}\;\] bằng:
Câu 6:
Sàn của một viện bảo tàng mỹ thuật được lát bằng những viên gạch hình vuông cạnh 40(cm) như hình bên. Biết rằng người thiết kế đã sử dụng các đường cong có phương trình \[4{x^2} = {y^4}\;\] và \[4{(|x| - 1)^3} = {y^2}\;\] để tạo hoa văn cho viên gạch. Diện tích phần được tô đậm gần nhất với giá trị nào dưới đây?
về câu hỏi!