Câu hỏi:
29/06/2022 277Cho các số phức \[{z_1} = 3i,{z_2} = m - 2i\]. Số giá trị nguyên của m để \[\left| {{z_2}} \right| < \left| {{z_1}} \right|\;\]là
Quảng cáo
Trả lời:
Ta có\[{z_1} = 3i;{z_2} = m - 2i \Rightarrow \left\{ {\begin{array}{*{20}{c}}{|{z_1}| = 3}\\{|{z_2}| = \sqrt {{m^2} + 4} }\end{array}} \right.\]
Mà
\[\left| {{z_2}} \right| < \left| {{z_1}} \right| \Rightarrow \sqrt {{m^2} + 4} < 3 \Leftrightarrow {m^2} + 4 < 9 \Leftrightarrow - \sqrt 5 < m < \sqrt 5 .\]</>
Mặt khác\[m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 2; - 1;0;1;2} \right\}.\]
Có 5 giá trị của m thỏa mãn yêu cầu bài toán.
Đáp án cần chọn là: B
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có\[{z_1}.\overline {{z_1}} = 4 \Rightarrow {\left| {{z_1}} \right|^2} = 4\]
Vậy \[P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} = 4 + {3^2} = 13\]Đáp án cần chọn là: A
Lời giải
Ta có:\[z = 1 + \sqrt 3 i \Rightarrow \frac{1}{z} = \frac{1}{{1 + \sqrt 3 i}} = \frac{{1 - \sqrt 3 i}}{{(1 - \sqrt 3 i)(1 + \sqrt 3 i)}}\]
\[ = \frac{{1 - \sqrt 3 i}}{{{1^2} - {{(\sqrt 3 i)}^2}}} = \frac{{1 - \sqrt 3 i}}{4} = \frac{1}{4} - \frac{{\sqrt 3 }}{4}i\]
Đáp án cần chọn là: D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.