Câu hỏi:

29/06/2022 230

Cho số phức z thỏa mãn \[2iz + \overline z = 1 - i.\]Phần thực của số phức z là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt\[z = a + bi\,\,\left( {a,b \in \mathbb{R}} \right) \Rightarrow \bar z = a - bi\]

Khi đó ta có:

\[2iz + \overline z = 1 - i\]

\[ \Leftrightarrow 2i(a + bi) + a - bi = 1 - i\]

\[ \Leftrightarrow 2ai - 2b + a - bi = 1 - i\]

\[ \Leftrightarrow (a - 2b) + (2a - b)i = 1 - i\]

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{a - 2b = 1}\\{2a - b = - 1}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{a = - 1}\\{b = - 1}\end{array}} \right.\)

\[ \Rightarrow z = - 1 - i\]

Vậy phần thực số phức z là −1.

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có\[{z_1}.\overline {{z_1}} = 4 \Rightarrow {\left| {{z_1}} \right|^2} = 4\]

Vậy \[P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2} = 4 + {3^2} = 13\]Đáp án cần chọn là: A

Câu 2

Cho số phức \[z = 1 + \sqrt 3 i\]. Khi đó

Lời giải

Ta có:\[z = 1 + \sqrt 3 i \Rightarrow \frac{1}{z} = \frac{1}{{1 + \sqrt 3 i}} = \frac{{1 - \sqrt 3 i}}{{(1 - \sqrt 3 i)(1 + \sqrt 3 i)}}\]

\[ = \frac{{1 - \sqrt 3 i}}{{{1^2} - {{(\sqrt 3 i)}^2}}} = \frac{{1 - \sqrt 3 i}}{4} = \frac{1}{4} - \frac{{\sqrt 3 }}{4}i\]

Đáp án cần chọn là: D

Câu 3

Số phức liên hợp của số phức \[z = a - bi\] là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Tìm các số thực x,y thỏa mãn đẳng thức \[3x + y + 5xi = 2y - (x - y)i.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho số phức \[z = 1 + i + {i^2} + {i^3} + ... + {i^9}\]. Khi đó:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP