Câu hỏi:

29/06/2022 135

Biết 1+i là nghiệm của phương trình \[zi + azi + bz + a = 0(a,b \in \mathbb{R})\;\] ẩn z trên tập số phức. Tìm \[{b^2} - {a^3}\].

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì \[z = 1 + i\] là 1 nghiệm của phương trình\[zi + azi + bz + a = 0\,\,\,\left( {a,b \in \mathbb{R}} \right)\]  nên ta có:

\[(1 + i)i + a.(i + 1)i + b(i + 1) + a = 0\]

\[ \Leftrightarrow - 1 + i + a( - 1 + i) + b + bi + a = 0\]

\[ \Leftrightarrow b - 1 + (1 + a + b)i = 0\]

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{b - 1 = 0}\\{1 + a + b = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{b = 1}\\{a = - 2}\end{array}} \right.\)Vậy\[{b^2} - {a^3} = {1^2} - {\left( { - 2} \right)^3} = 9.\]

Đáp án cần chọn là: D

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai số phức \[{z_1},\,\,{z_2}\] thỏa mãn \[{z_1}\overline {.{z_1}} = 4,\left| {{z_2}} \right| = 3\]. Giá trị biểu thức \[P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\;\] bằng:

Xem đáp án » 29/06/2022 1,613

Câu 2:

Cho số phức \[z = 1 + \sqrt 3 i\]. Khi đó

Xem đáp án » 29/06/2022 1,350

Câu 3:

Số phức liên hợp của số phức \[z = a - bi\] là:

Xem đáp án » 29/06/2022 595

Câu 4:

Tìm các số thực x,y thỏa mãn đẳng thức \[3x + y + 5xi = 2y - (x - y)i.\]

Xem đáp án » 29/06/2022 448

Câu 5:

Cho số phức \[z = 1 + i + {i^2} + {i^3} + ... + {i^9}\]. Khi đó:

Xem đáp án » 29/06/2022 432

Câu 6:

Số phức \[z = a + bi\;\] có phần thực là:

Xem đáp án » 29/06/2022 367

Câu 7:

Số phức \[z = \sqrt 2 i - 1\] có phần thực là:

Xem đáp án » 29/06/2022 334

Bình luận


Bình luận