Câu hỏi:

29/06/2022 119

Cho các số phức z và w thỏa mãn \[\left( {3 - i} \right)\left| z \right| = \frac{z}{{w - 1}} + 1 - i\]. Tìm GTLN của \[T = |w + i|\]

Đáp án chính xác

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dễ dàng kiểm tra z=0 không thỏa mãn\[\left( {3 - i} \right)\left| z \right| = \frac{z}{{w - 1}} + 1 - i\]

Ta có: \[\left( {3 - i} \right)\left| z \right| = \frac{z}{{w - 1}} + 1 - i \Leftrightarrow \frac{z}{{w - 1}} = \left( {3 - i} \right)\left| z \right| + i - 1\]

\[ \Leftrightarrow \frac{z}{{w - 1}} = \left( {3\left| z \right| - 1} \right) + \left( {1 - \left| z \right|} \right)i\]

\[ \Rightarrow \left| {\frac{z}{{w - 1}}} \right| = \sqrt {10{{\left| z \right|}^2} - 8\left| z \right| + 2} \Rightarrow \left| {w - 1} \right| = \sqrt {\frac{{{{\left| z \right|}^2}}}{{10{{\left| z \right|}^2} - 8\left| z \right| + 2}}} \]

Nhận xét: \[T = \left| {w + i} \right| \le \left| {w - 1} \right| + \left| {1 + i} \right| = \frac{1}{{\sqrt {\frac{2}{{{{\left| z \right|}^2}}} - \frac{8}{{\left| z \right|}} + 10} }} + \sqrt 2 \]

\[ = \frac{1}{{\sqrt {2{{\left( {\frac{1}{{\left| z \right|}} - 2} \right)}^2} + 2} }} + \sqrt 2 \le \frac{{3\sqrt 2 }}{2}\]

Dấu “=” xảy ra khi và chỉ khỉ

\(\left\{ {\begin{array}{*{20}{c}}{|z| = \frac{1}{2}}\\{w - 1 = k(1 + i)}\\{(3 - i)|z| = \frac{z}{{w - 1}} + 1 - i}\end{array}} \right.(k > 0)\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{|z| = \frac{1}{2}}\\{w - 1 = k(1 + i)}\\{(3 - i)\frac{1}{2} = \frac{z}{{k(1 + i)}} + 1 - i}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{|z| = \frac{1}{2}}\\{w - 1 = k(1 + i)}\\{z = \frac{{1 + i}}{2}.\frac{{2k}}{{1 - i}}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{|z| = \frac{1}{2}}\\{w - 1 = k(1 + i)}\\{|z| = k(dok > 0)}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{|z| = \frac{1}{2} = k}\\{w - 1 = \frac{1}{2}(1 + i)}\\{z = \frac{{1 + i}}{2}.\frac{{2k}}{{1 - i}}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{z = \frac{i}{2}}\\{w = \frac{3}{2} + \frac{1}{2}i}\end{array}} \right.\)

Vậy,\[\max T = \frac{{3\sqrt 2 }}{2}\]

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai số phức \[{z_1},\,\,{z_2}\] thỏa mãn \[{z_1}\overline {.{z_1}} = 4,\left| {{z_2}} \right| = 3\]. Giá trị biểu thức \[P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\;\] bằng:

Xem đáp án » 29/06/2022 1,555

Câu 2:

Cho số phức \[z = 1 + \sqrt 3 i\]. Khi đó

Xem đáp án » 29/06/2022 1,257

Câu 3:

Số phức liên hợp của số phức \[z = a - bi\] là:

Xem đáp án » 29/06/2022 529

Câu 4:

Tìm các số thực x,y thỏa mãn đẳng thức \[3x + y + 5xi = 2y - (x - y)i.\]

Xem đáp án » 29/06/2022 406

Câu 5:

Cho số phức \[z = 1 + i + {i^2} + {i^3} + ... + {i^9}\]. Khi đó:

Xem đáp án » 29/06/2022 388

Câu 6:

Số phức \[z = a + bi\;\] có phần thực là:

Xem đáp án » 29/06/2022 326

Câu 7:

Số phức \[z = \sqrt 2 i - 1\] có phần thực là:

Xem đáp án » 29/06/2022 291

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn