Câu hỏi:

29/06/2022 1,750

Khối chóp có đáy là hình bình hành, một cạnh đáy bằng a và các cạnh bên đều bằng \(a\sqrt 2 \). Thể tích của khối chóp có giá trị lớn nhất là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Khối chóp có đáy là hình bình hành, một cạnh đáy bằng a và các cạnh bên đều bằng (ảnh 1)

Gọi \[O = AC \cap BD\]

Tam giác SAC cân tại S, SO là trung tuyến\[ \Rightarrow SO \bot AC\]

Tam giác SBD cân tại S, SO là trung tuyến \[ \Rightarrow SO \bot BD\]

\[ \Rightarrow SO \bot \left( {ABCD} \right)\]

Vì \[SA = SB = SC = SDSO \bot \left( {ABCD} \right)\] nên O là tâm đường tròn ngoại tiếp ABCD.

Hình bình hành ABCD nội tiếp đường tròn (O) nên ABCD phải là hình chữ nhật.

Theo bài ra ta giả sử AD=a và đặt\[AB = x\,\,\left( {x > 0} \right)\]

Áp dụng định lí Pytago trong tam giác vuông ABC có:

\[AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {x^2}} \]

\[ \Rightarrow AO = \frac{1}{2}AC = \frac{1}{2}\sqrt {{a^2} + {x^2}} \]

Áp dụng định lí Pytago trong tam giác vuông SOA có:

\[SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {2{a^2} - \frac{{{a^2} + {x^2}}}{4}} = \frac{1}{2}\sqrt {7{a^2} - {x^2}} \]

Khi đó ta có

\[{V_{S.ABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.\frac{1}{2}\sqrt {7{a^2} - {x^2}} .ax = \frac{a}{6}x\sqrt {7{a^2} - {x^2}} \]

Áp dụng BĐT Cô-si ta có:\[x\sqrt {7{a^2} - {x^2}} \le \frac{{{x^2} + 7{a^2} - {x^2}}}{2} = \frac{{7{a^2}}}{2}\]

\[ \Rightarrow {V_{S.ABCD}} \le \frac{a}{6}.\frac{{7{a^2}}}{2} = \frac{{7{a^3}}}{{12}}\]

Dấu “=” xảy ra \[ \Leftrightarrow {x^2} = 7{a^2} - {x^2} \Leftrightarrow x = \frac{{a\sqrt {14} }}{2}\]

Vậy thể tích khối chóp S.ABCD đạt giá trị lớn nhất bằng\[\frac{{7{a^3}}}{{12}} \Leftrightarrow x = \frac{{a\sqrt {14} }}{2}\]

Đáp án cần chọn là: D

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hình chiếu vuông góc của S trên mặt đáy nằm trong hình vuông ABCD. Biết rằng SA và SC tạo với đáy các góc bằng nhau, góc giữa SB và đáy bằng 450, góc giữa SD và đáy bằng α với \[tan\alpha = \frac{1}{3}\]. Tính thể tích khối chóp đã cho.

Xem đáp án » 29/06/2022 2,899

Câu 2:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Đường thẳng SC tạo với đáy góc 450. Gọi M,N lần lượt là trung điểm của AB và AD. Thể tích của khối chóp S.MCDN là:

Xem đáp án » 29/06/2022 2,384

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạnh AB,BC. Điểm I thuộc đoạn SA. Biết mặt phẳng (MNI) chia khối chóp S.ABCD  thành hai phần, phần chứa đỉnh S có thể tích bằng \[\frac{7}{{25}}\] lần phần còn lại. Tính tỉ số \[\frac{{IA}}{{IS}}\]?

Xem đáp án » 29/06/2022 2,339

Câu 4:

Đáy của hình chóp S.ABCD là một hình vuông cạnh a. Cạnh bên SA vuông góc với mặt đáy và có độ dài là a. Thể tích khối tứ diện S.BCD bằng:

Xem đáp án » 29/06/2022 2,288

Câu 5:

Cho khối chóp S.ABCD có thể tích bằng 4a3, đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SD. Biết diện tích tam giác SAB bằng a2. Tính khoảng cách từ M tới mặt phẳng (SAB).

Xem đáp án » 29/06/2022 2,172

Câu 6:

Cho khối lăng trụ tam giác đều ABC.A1B1C1 có tất cả các cạnh bằng a. Gọi M là trung điểm của AA1. Thể tích khối chóp M.BCA1 là:

Xem đáp án » 29/06/2022 2,071
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay