Câu hỏi:

29/06/2022 402

Cho hình lăng trụ ABC.A′B′C′ có AB=2a,AC=a,\(AA' = \frac{{a\sqrt {10} }}{2},\widehat {BAC} = {120^0}\). Hình chiếu vuông góc của C′ lên (ABC) là trung điểm của cạnh BC. Tính thể tích khối lăng trụ ABC.A′B′C′ theo a?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình lăng trụ ABC.A′B′C′ có AB=2a,AC=a, (ảnh 1)

Áp dụng định lí Côsin trong tam giác ABC có:

\[BC = \sqrt {A{B^2} + A{C^2} - 2AB.AC.\cos 120} \]

\[ = \sqrt {4{a^2} + {a^2} - 2.2a.a.\frac{{ - 1}}{2}} = a\sqrt 7 \Rightarrow CH = \frac{1}{2}BC = \frac{{a\sqrt 7 }}{2}\]

\[C'H \bot \left( {ABC} \right) \Rightarrow C'H \bot CH \Rightarrow {\rm{\Delta }}CC'H\] vuông tại H

\[ \Rightarrow C'H = \sqrt {C{C^{\prime 2}} - C{H^2}} = \sqrt {\frac{{10{a^2}}}{4} - \frac{{7{a^2}}}{4}} = \frac{{a\sqrt 3 }}{2}\]

\[{S_{ABC}} = \frac{1}{2}AB.AC.\sin 120 = \frac{1}{2}.2a.a.\frac{{\sqrt 3 }}{2} = \frac{{{a^2}\sqrt 3 }}{2}\]

Vậy\[{V_{ABC.A'B'C'}} = C'H.{S_{ABC}} = \frac{{a\sqrt 3 }}{2}.\frac{{{a^2}\sqrt 3 }}{2} = \frac{{3{a^3}}}{4}\]

Đáp án cần chọn là: B

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cạnh của khối lập phương đã cho là:\[a = \sqrt[3]{{27}} = 3.\]

⇒ Diện tích toàn phần của khối lập phương đã cho là:\[{6.3^2} = 54.\]

Đáp án cần chọn là: D

Lời giải

Chọn\[AD = BE = CF = \frac{5}{3}\] thì đa diện là hình lăng trụ đứng\[ABC.DEF\] có diện tích đáy\[{S_{ABC}} = 10\] và chiều cao\[AD = \frac{5}{3}\]

Thể tích\[V = {S_{ABC}}.AD = 10.\frac{5}{3} = \frac{{50}}{3}\]

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho lăng trụ đứng ABC.A′B′C′ với ABC là tam giác vuông cân tại C có AB=a , mặt bên ABB′A′ là hình vuông. Mặt phẳng qua trung điểm I của AB và vuông góc với AB′ chia khối lăng trụ thành 2 phần. Tính thể tích mỗi phần?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay