Câu hỏi:
29/06/2022 357Cho hình lăng trụ ABC.A′B′C′ có đáy ABC là tam giác vuông tại A. Cạnh BC=2a và \[\angle ABC = {60^0}\]. Biết tứ giác BCC′B′ là hình thoi có \[\angle B\prime BC\;\] nhọn. Mặt phẳng \[(BCC\prime B\prime )\;\]vuông góc với (ABC) và mặt phẳng \[(ABB\prime A\prime )\;\]tạo với (ABC) góc 450. Thể tích khối lăng trụ ABC.A′B′C′ bằng:
Quảng cáo
Trả lời:
Trong (BCC′B′) kẻ \[B'H \bot BC\,\,\left( {H \in BC} \right)\] (do \[\angle B'BC\] nhọn).
Trong \[\left( {ABC} \right)\]kẻ\[HK\parallel AC \Rightarrow HK \bot AB\]ta có:
\(\left\{ {\begin{array}{*{20}{c}}{AB \bot HK}\\{AB \bot B\prime H}\end{array}} \right. \Rightarrow AB \bot (B\prime HK) \Rightarrow AB \bot B\prime K\)
Ta có:\(\left\{ {\begin{array}{*{20}{c}}{(ABB\prime A\prime ) \cap (ABC) = AB}\\{B\prime K \subset (ABB\prime A\prime ),B\prime K \bot AB}\\{HK \subset (ABC),HK \bot AB}\end{array}} \right.\)
\[ \Rightarrow \angle \left( {\left( {ABB'A'} \right);\left( {ABC} \right)} \right) = \angle \left( {B'K;HK} \right) = \angle B'HK = {45^0}\]
\[ \Rightarrow {\rm{\Delta }}B'HK\] vuông cân tại\[H \Rightarrow B'H = HK = x\]
Xét tam giác vuông BB′H có: \[BH = \sqrt {B{B^{\prime 2}} - B{H^{\prime 2}}} = \sqrt {4{a^2} - {x^2}} \]
Xét tam giác vuông ABC có: \[AC = BC.\sin {60^0} = a\sqrt 3 ,AB = BC.\cos {60^0} = a\]
Áp dụng định lí Ta-lét ta có: \[\frac{{BH}}{{BC}} = \frac{{HK}}{{AC}} \Rightarrow \frac{{\sqrt {4{a^2} - {x^2}} }}{{2a}} = \frac{x}{{a\sqrt 3 }}\]
\[\begin{array}{*{20}{l}}{ \Leftrightarrow 3\left( {4{a^2} - {x^2}} \right) = 4{x^2}}\\{ \Leftrightarrow 12{a^2} - 3{x^2} = 4{x^2}}\\{ \Leftrightarrow {x^2} = \frac{{12{a^2}}}{7}}\\{ \Leftrightarrow x = \frac{{2a\sqrt {21} }}{7} = B'H}\end{array}\]
\[{S_{{\rm{\Delta }}ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.a.a\sqrt 3 = \frac{{{a^2}\sqrt 3 }}{2}\]
Vậy\[{V_{ABC.A'B'C'}} = B'H.{S_{{\rm{\Delta }}ABC}} = \frac{{2a\sqrt {21} }}{7}.\frac{{{a^2}\sqrt 3 }}{2} = \frac{{3{a^3}\sqrt 7 }}{7}\]Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Cạnh của khối lập phương đã cho là:\[a = \sqrt[3]{{27}} = 3.\]
⇒ Diện tích toàn phần của khối lập phương đã cho là:\[{6.3^2} = 54.\]
Đáp án cần chọn là: D
Lời giải
Chọn\[AD = BE = CF = \frac{5}{3}\] thì đa diện là hình lăng trụ đứng\[ABC.DEF\] có diện tích đáy\[{S_{ABC}} = 10\] và chiều cao\[AD = \frac{5}{3}\]
Thể tích\[V = {S_{ABC}}.AD = 10.\frac{5}{3} = \frac{{50}}{3}\]
Đáp án cần chọn là: C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Bộ 20 đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi thử ĐGNL ĐHQG Hà Nội năm 2023-2024 (Đề 20)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 30)
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 15)
ĐGNL ĐHQG Hà Nội - Tư duy định tính - Tìm và phát hiện lỗi sai
Đề thi Đánh giá năng lực ĐHQG Hà Nội năm 2024 - 2025 có đáp án (Đề 1)
Đề thi Đánh giá năng lực ĐHQG Hà Nội form 2025 có đáp án (Đề 3)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận