Câu hỏi:

29/06/2022 357

Công thức tính diện tích toàn phần hình nón có bán kính đáy r, độ dài đường cao h và độ dài đường sinh l là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Công thức tính diện tích toàn phần hình nón có bán kính đáy r và độ dài đường sinh l là: \[{S_{tp}} = \pi rl + \pi {r^2}\]

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hình vuông ABCD cạnh bằng 2. Gọi M là trung điểm AB. Cho tứ giác AMCD và các điểm trong của nó quay quanh trục AD ta được một khối tròn xoay. Tính thể tích khối tròn xoay đó. (ảnh 1)

Kéo dài CM cắt DA tại E. Quay hình thang vuông AMCD quanh trục AD ta được hình nón cụt như hình vẽ.

Quay tam giác EDC quanh trục ED ta được hình nón.

Dễ thấy \[{V_{nc}} = {V_1} - {V_2}\] V1V1 là thể tích khối nón đỉnh E, bán kính đáy DC = 2DC = 2 và V2 là thể tích khối nón đỉnh E, bán kính đáy AM = 1

Có\[\frac{{EA}}{{ED}} = \frac{{AM}}{{DC}} = \frac{1}{2} \Rightarrow EA = AD = 2 \Rightarrow ED = 4\]

\[ \Rightarrow {V_1} = \frac{1}{3}\pi D{C^2}.ED = \frac{1}{3}\pi {.2^2}.4 = \frac{{16\pi }}{3}\]

\[{V_2} = \frac{1}{3}\pi A{M^2}EA = \frac{1}{3}\pi {.1^2}.2 = \frac{{2\pi }}{3}\]

Vậy \[V = {V_1} - {V_2} = \frac{{16\pi }}{3} - \frac{{2\pi }}{3} = \frac{{14\pi }}{3}\]

Đáp án cần chọn là: C

Lời giải

Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABCD); tứ giác ABCD là hình thang vuông với cạnh đáy AD,BC; AD = 3BC = 3a, AB = a, (ảnh 1)

Xét tam giác SAD vuông tại A có \[SA = a\sqrt 3 ,AD = 3a \Rightarrow \widehat {SDA} = {30^0} \Rightarrow \widehat {MAI} = {30^0}\]

Lại có tam giác SAI vuông tại A có\[SA = a\sqrt 3 ,AI = a \Rightarrow \widehat {SIA} = {60^0}\] nên tam giác AHI có\[\hat H = {90^0}\]  hay \[AH \bot SI\]

Mà \[AH \bot IC\] do \[IC//BA \bot \left( {SAD} \right)\]  nên \[AH \bot \left( {SIC} \right) \Rightarrow AH \bot SC\]Ngoài ra,\[AE \bot SB,AE \bot BC\left( {BC \bot \left( {SAB} \right)} \right) \Rightarrow AE \bot \left( {SBC} \right) \Rightarrow AE \bot SC\]

Mà\[AF \bot SC\]  nên\[SC \bot \left( {AEFH} \right)\] và AEFH là tứ giác có \[\hat E = \hat H = {90^0}\] nên nội tiếp đường tròn tâm K là trung điểm AF đường kính AF.Gọi O là trung điểm AC thì OK//SC, mà\[SC \bot \left( {AEFH} \right)\] nên \[OK \bot \left( {AEFH} \right)\] hay O chính là đỉnh hình nón và đường tròn đáy là đường tròn đường kính AF.

Ta tính AF,OK.

Xét tam giác SAC vuông tại A đường cao AF nên

\[AF = \frac{{SA.AC}}{{SC}} = \frac{{SA.AC}}{{\sqrt {S{A^2} + A{C^2}} }} = \frac{{a\sqrt 6 }}{{\sqrt 5 }};OK = \frac{1}{2}CF = \frac{1}{2}.\frac{{C{A^2}}}{{CS}} = \frac{a}{{\sqrt 5 }}\]

Vậy thể tích \[V = \frac{1}{3}\pi {r^2}h = \frac{1}{3}\pi .\frac{a}{{\sqrt 5 }}.{\left( {\frac{1}{2}.\frac{{a\sqrt 6 }}{{\sqrt 5 }}} \right)^2} = \frac{{\pi {a^3}}}{{10\sqrt 5 }}\]

Đáp án cần chọn là: C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP